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ABSTRACT 

Volume predictions based on conjoint analysis are particularly challenging in packaged goods 
categories where variety seeking is common, and consumers simultaneously buy multiple 
brands. Extant volumetric demand models applied to volumetric choice experiments are unable 
to deal with variation in assortment size. We extend Multiple Discrete Continuous Models to 
include a relationship between assortment size and marginal utilities. Using two volumetric 
conjoint studies in different categories (chocolate bars and air fresheners), we demonstrate the 
proposed model’s ability to predict demand for market-like scenarios, while analogous MDCMs 
over-predict primary demand by 40%–80%. 

1. INTRODUCTION 

Conjoint analysis is often used as a basis for sales volume predictions. Using choice shares to 
predict volumes is straightforward when several assumptions are met, including a fixed market 
size and independence of preferences and quantity demanded. These assumptions may not be 
appropriate in packaged goods where many consumers buy more than one brand simultaneously, 
and some brands might be more popular for consumers who buy larger quantities, while other 
brands or features are more popular with those who tend to buy lower quantities. Extant 
volumetric demand models are able to describe simultaneous demand of multiple varieties and 
capture preference-quantity relationships, but we show that these models are inappropriate when 
there is variation in assortment size or choice set size. However, choice set sizes in conjoint are 
usually much smaller than assortments in store, rendering extant demand models useless for most 
volume prediction tasks. 

Assortment size variation also matters for retailers trying to optimize their assortments with 
respect to their composition and size. The introduction of a new line of store brand products 
might grow the category altogether or just “steal” shares from other brands. In model terms, the 
outcome depends on consumer budgets, preferences, satiation and the number of choice 
alternatives for each scenario. Extant models are too inflexible to deal with variation of 
assortment size. 

We build on Multiple Discrete Continuous Models (MDCMs) that are often used to model 
volumetric demand, and propose a parameterization of assortment size that captures negative 
effects of choice-set size on inside good marginal utilities (which is equivalent to positive effects 
on the marginal utility of the outside good). While demand for inside goods will often increase
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with growing assortment size, the marginal utility of an individual unit can decrease. Once a 

certain assortment size is reached, additional increases in size might even result in decreasing 

demand. The model is thus able to describe phenomena described by behavioral researchers. For 

instance, Dhar (1997) finds that larger assortments may lead to deferral of choice. Schwartz 

(2016) suggests that “more is less.” We do not expect to find “choice overload” in our typical 

packaged goods applications, but the model would be able to describe patterns consistent with 

that idea. 

To understand why extant MDCM models are inappropriate when assortment size varies, we 

need to review how these models work. They allow for “corner solutions” (products that are not 

purchased) and multiple “interior solutions” (products that are bought, where the purchase 

quantity is continuous). Multiple interior solutions are possible because it assumed that there are 

diminishing marginal utilities to all goods. Consuming only the good with the highest baseline 

marginal utility might not be utility-optimal, since the marginal increase in utility decreases. 

Instead, consumers may choose to buy several different goods at the same time. When several 

additional product varieties are added to the choice-set, more products can be purchased at a 

given marginal rate of utility, resulting in increased overall demand for inside goods. It is 

therefore built into these multiple discrete-continuous models that primary demand is 

monotonically increasing with choice-set size. The relationship between set size and primary 

demand is governed by parameters already identified in the absence of set size variation. This 

means that these models are over-identified when choice-set size varies. These models are unable 

to explain negative relationships between inside good marginal utilities and assortment size and 

are thus prone to overpredict demand for scenarios with larger assortment sizes. 

We demonstrate the performance of our model using two volumetric conjoint studies of 

chocolate bars in Germany and non-electric air fresheners in the US. Parameters governing 

secondary demand (“utilities” or “part-worths”) are largely unaffected by set size variation, 

however, ignoring set size variation leads to dramatic over-prediction of primary demand. Extant 

models are off by as much as 80% in our first study and 40% in our second study. 

2. OUR PROPOSED MODEL 

For an overview and the economic background of choice, see Allenby et al. (2019) and Dubé  
(2019). MDCMs can explain simultaneous demand for multiple distinct products. For each so-

called interior solution (i.e., each product that is bought), demand quantities are assumed 

continuous. This simplifying assumption allows developing models based on the Karush-Kuhn-

Tucker conditions which are computationally tractable. 

The economic assumptions behind these models are straightforward: Decision makers 

maximize utility subject to a budget constraint. The utility maximization problem for a single 

choice occasion (i.e., a single choice task or shopping trip) can be expressed as: 
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Here, 𝑥𝑗 is the purchased quantity of good 𝑗, and 𝜓𝑗 represents the baseline preference for that 

good 𝑗. The rate of satiation of inside goods is controlled by 𝛾, and 𝑝𝑗 is the price of a unit of 

good 𝑗. The outside good 𝑧 represents unspent money that the decision maker has been willing to 
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allocate towards the focal category, but eventually did not end up spending on inside goods 

available in the choice set. We assume that there are diminishing returns to unspent money, and 

therefore use a nonlinear specification of 𝑧. This allows estimating the budgetary allotment 𝐸, 

which is identified through the functional form of the utility function. Baseline marginal utility 

of good 𝑗 is defined as follows, assuming multiplicative, independent error terms for each of the 

inside goods: 

(0.2) ( )expj j j = +a β  

where 𝛽 is the vector of “part-worths” and ja is the design vector for alternative 𝑗, and 𝜀𝑗 is a 

random term. 𝐚𝑗 can be specified using dummy coding, in which case the first element of 𝛽, 𝛽0, 

serves as an intercept capturing the baseline marginal utility of an inside good vs the outside 

good. Alternatively, effects coding can be used. The corresponding likelihood function can be 

developed by exploiting the Karush-Kuhn-Tucker (KKT) conditions. For the purpose of 

identification, and without loss of generality, it is common to constrain 𝜓𝑧 = 1, which reduces 

the dimensionality of the system of equations defined by the KKT conditions by one. 

This specification implies that, unless the budget constraint is binding, (1) primary demand is 

increasing in choice-set size, and (2) the strength of this relationship is determined by parameters 

which are already identified in the absence of set size variation. In other words, once set size 

variation introduced, the model is over-identified, and it is possible to identify a parameter in 

place of 𝜓𝑧 if it is a function of 𝑁𝑡. A simple specification is shown in the equation below, where 

outside good baseline marginal utility 𝜓𝑧 is a function of 𝑁𝑡 and a set size parameter 𝜉: 

(0.3) ( ) ( )( ); exp 0 ln( ; )z t tf N f N  = = +  

Here, 𝜉 must be constrained to be positive, because stronger relationships between set size and 

primary demand can be represented by corresponding combinations of 𝛽0, 𝛾, 𝐸 already. This 

constraint will ensure identification. Depending on the amount of information available, 𝑓(𝑁𝑡; 𝜉) 

can be specified in more or less flexible ways, or even be estimated non-parametrically. In our 

first empirical application, we only observe two discrete sizes of the choice set. In this case, a 

simple linear specification can be fit: 

(0.4) ( )1 1; 1t tf N N = +  

This parameterization implies that the marginal utility of the outside good is increasing in 𝑁𝑡. 

Relatively speaking, the utility of each inside good is decreasing in 𝑁𝑡. The resulting model nests 

the extant volumetric demand model when 𝜉 = 0. Larger values of 𝜉 mean that consumers do 

attach higher relative marginal utility to the outside good as 𝑁𝑡 increases. In our second empirical 

application, we observe three different choice-set sizes. In that case, we can also fit a 2nd order 

polynomial. The appropriate order of the polynomial can be identified by comparing models 

based on the log-marginal likelihood. 

The model likelihood is straightforward to derive. 
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where ( ) ( ) ( ) ( )ln 1 ln ln 1 lnkt kt t kt kt tg N p x z  = − + + + + + −a  
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It is important to remember that 𝜉 is only identified when there is variation in 𝑁𝑡. The source 

of variation in 𝑁𝑡 can be experimental (e.g., in a choice experiment) or natural (when a store 

changes assortments over time in purchase transaction or similar “revealed preference” data). 

To illustrate the influence of 𝜉 on primary demand, we use a simulation exercise. We 

compute expected demand for a single decision maker, varying 𝑁𝑡 and 𝜉, while all choice 

alternatives have the same deterministic utility. The resulting primary demand curves are shown 

in Figure 1. 𝜉 = 0 corresponds to the simple volumetric demand model, while larger values of 𝜉 

show smaller increases in primary demand, or even decreasing primary demand. Comparing the 

different demand curves, we see that significant variation in the number of alternatives may be 

necessary to notice the relationship. An increase from 8 to 12 choice alternatives may only have 

a small impact on primary demand. However, once we consider demand in much larger 

assortments with 20 or more alternatives, there are considerable differences in predicted primary 

demand. 

Figure 7: Assortment Size and Primary Demand 

 

2.1 Heterogeneity and Estimation 

𝜃ℎ = {𝛽ℎ, ln𝛾ℎ, ln𝐸ℎ, ln𝜎ℎ, ln𝜉ℎ} is subject/respondent ℎ’s vector of parameters of length 𝑀 

governing the individual-level demand model. We assume a simple Multivariate Normal model 

of heterogeneity, i.e., 𝜃ℎ ∼ Normal(𝜃‾, 𝛴). 

2.2 Demand Predictions 

Demand 𝑥ℎ𝑡 from consumer ℎ at time 𝑡 is a function of parameters of the demand model 

(𝜃ℎ), a realization of the vector of error terms (𝜀ℎ𝑡), and characteristics of the available 

assortment including prices. We call the demand function 𝐷: 

Standard MDMC:  

Primary demand increases quickly in assortment size until 

budget constraint is hit 
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(0.6) ( )D , | ,ht h ht t t=x ε A p  

There is no closed form solution for it. However, it can be computed using an iterative 

procedure that at worst takes 𝑅𝑡 iterations. Finally, expected demand is obtained by integrating 

out the error term and posterior distribution of model parameters 𝜃ℎ. Numeric integration is 

computationally cheap, because draws of 𝜃 have already been produced in the process of 

estimating the model, and D can easily be computed. 

3. EMPIRICAL APPLICATION 

We use data from two studies to investigate the properties of our proposed demand model. 

Both datasets are collected from commercials panels. In both studies, we use experimental 

choice-set size variation which can help identify the proposed set size parameter(s). We use the 

estimated models to extrapolate from the relative small-𝑁 experimental world to market-like 

large-𝑁 scenarios. The following models will be applied: 

 vd   an extant specification of a volumetric demand model 

 vd-ss(𝑜) our proposed model (where 𝜊 is the order of the polynomial) 

To identify respondents with unrealistic or incoherent preferences, we first estimate simple 

volumetric demand models (vd) for each set-size, obtain individual log-likelihood values and 

remove about the 10% of worst-fitting respondents. We also remove respondents who never 

choose a single choice alternative. 

3.1 Chocolate Bars 

The design of the German chocolate bar volumetric conjoint follows standard procedures, 

except for the presence choice-set size variation (8 and 18 alternatives per task). In order to test 

how accurately competing demand models predict market-level demand in a “base case” 

scenario (i.e., current market demand at current market offerings), the study is designed to 

reproduce a set of typical market offerings available in supermarkets across Germany in 2018. 

Therefore, no new flavors or flavor combinations were added to the study. 

Table 3: Attributes and Levels (Chocolate Bars) 

Attributes Levels 

Brand Alpia, Feodora, Kinder, Lindt, Merci, Milka, Nestle, Ritter, Sarotti, 

 Schogetten, Suchard, Tobler, Trumpf, Ferrero/Yogurette 

Chocolate Milk, Dark, Black, White 

Nut Nut, No Nut 

Fruit Fruit, Berry, Grape, No Fruit 

Filling None, Yogurt, Choc Chunk, Coffee, Cookie, Black and White, Crisp, 

 Nougat, Caramel, Milk Creme, Special, Marzipan 
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We characterized chocolate bars in terms of five key attributes: Brand name, Chocolate type, 

Nut content, Fruit or Berry content and Filling. An overview of attributes and levels in shown in 

Table 1. Using those attributes and levels we can map between product space (with about 100 

unique products accounting for 80% of sales volume) and the lower-dimensional attribute space. 

Figures 2 and 3 show example choice tasks with 8 and 18 alternatives, respectively. 

Figure 8: 8 Alternatives (Chocolate Bars) 

 

Figure 9: 18 Alternatives (Chocolate Bars) 
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Descriptive statistics of demand are summarized in Table 2. Respondents choose larger 

quantities (1.95 instead of 1.31) and more varieties (around 1.54 instead of 1.05) when offered a 

larger assortment. Therefore, they overall spend more when larger assortments are offered. 

Table 4: Descriptive Statistics (Chocolate Bars) 

Number of 

Alternatives 

Units 

per task 

Varieties 

per task 

$ spent 

per task 

Maximum 

spent 

 mean sd mean Sd mean sd mean sd 

8 𝟏. 𝟑𝟏 1.25 𝟏. 𝟎𝟓 0.93 1.53 1.55 3.20 1.91 

18 𝟏. 𝟗𝟓 2.08 𝟏. 𝟓𝟒 1.61 2.29 2.56 4.44 3.27 

 

We randomly select 1 choice task per respondent for out-of-sample fit statistic computation 

and estimate the proposed and benchmark models (vd-ss(1) and vd). 

Table 5: Comparing Fit (Chocolate Bars) 

 In-sample Out of sample 

Model LMD MSE MAE 

Vd -12,423 0.445 0.183 

vd-ss(1) -12,346 0.455 0.182 

Fit statistics are presented in Table 3. It shows the log marginal density of the data (LMD) for 

in-sample fit, and the mean squared error (MSE) and mean absolute error (MAE) for out-of-

sample fit. There are no dramatic differences in model fit between the models. This is to be 

expected, because choice-set size variation is limited to 8 and 18 alternatives. A much better test 

of external validity is based on the ability of the model to predict actual purchase behavior, 

beyond the respective choice experiment. 

We use a “base case” scenario that mimics an assortment available at a typical German 

supermarket in 2018. It consists of 117 products, including their configuration and typical price. 

Focusing on primary (i.e., total) demand per respondent, we compare self-stated purchase 

quantity during the last shopping trip to predicted purchase quantity. Figure 4 shows distributions 

of absolute error for the proposed and competing models. It is clear that the extant model is 

biased, over-predicting self-reported quantities. 

Figure 10: Predicted vs Self-Stated Quantity (Chocolate Bars) 
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In order to project marketplace demand, we need to make additional assumptions: The 

number of households in Germany that regularly shop chocolate bars is around 25,000,000. 

Germans shop for chocolate almost every week, for an average of 3 shopping trips per month 

during which they shop for chocolate bars. These are simplifying assumptions, ignoring both 

purchase dynamics (e.g., stockpiling) and consumption dynamics (e.g., consumers eating more 

because “it is there”). Extrapolated marketplace demand estimates (in tons of chocolate) are 

shown in Table 4. For reference, we add an extrapolation based on stated quantity. From 

aggregate reports, we found that actual marketplace demand equals about 240,000t3. The extant 

model dramatically over-predicts demand, while the proposed model produces a realistic 

prediction. 

Our model also allows counterfactuals with respect to assortment size. Figure 5 shows that 

about 20 offerings are sufficient to reach a high level of primary demand. 

Table 6: Market Extrapolation (Chocolate Bars) 

Model E(demand) CI-5% CI-95% 

Vd 434,730 419,298 450,810 

vd-ss(1) 218,742 191,678 242,982 

Based on stated quantity 215,422   

Actual ∼240,000   

Figure 11: Counterfactualizing Assortment Size 

 

3.2 Air Fresheners 

In our second application, we conducted a volumetric choice experiment in the air “NECA” 

freshener category. These are simple non-electric air fresheners available in regular retail stores. 

Respondents were recruited from a commercial panel in the United States. They were shown 8, 

16 and 24 choice alternatives for a total of 15 choice tasks. An example choice task with 16 

alternatives is shown in Figure 6. 

 

 

3 The latest actual marketplace demand number we found is from 2016. We have not seen evidence for dramatic changes in primary demand. 
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In order to assess the ability to extrapolate demand to scenarios with more choice 

alternatives, we showed respondents an initial “shelf task” with 57 choice alternatives. The 

assortment of 57 alternatives closely resembles a typical offering in a store. Moreover, this shelf 

task does not show an attribute grid, since it’s meant to best mimic a real-world purchase 

decision in a store. 

Descriptive statistics of demand are summarized in Table 5. Summaries are broken down by 

number of choice alternatives shown. Primary demand increases as the set size is increased 

beyond 16 alternatives. This supports the general idea that consumers respond to increased 

variety by increasing primary demand. 

Figure 12: Choice Task (Air Fresheners) 

 

Table 7: Descriptive Statistics (Air Fresheners) 

Number of 

Alternatives 

Units 

per task 

Varieties 

per task 

$ spent 

per task 

Maximum 

spent 

  mean sd mean Sd mean sd mean sd 

8  𝟏. 𝟎𝟓 1.27 0.79 0.80 2.80 3.84 6.30 5.46 

16  𝟏. 𝟎𝟒 1.31 0.80 0.87 2.84 4.07 6.20 5.59 

24  𝟏. 𝟒𝟑 1.76 1.11 1.17 3.88 5.27 7.59 7.17 

57  𝟒. 𝟏𝟏 6.18 2.58 2.87 6.21 10.10 6.21 10.10 

Table 6 shows the predictive accuracy of the competing models. Models with set size 

adjustment again outperform the extant model. Our proposed vd-ss(1) model produced the best 

in-sample fit and is able to generate more accurate predictions, with relative bias close to 0. 

Table 8: Validation Task Fit (Air Fresheners) 

Model MSE MAE Bias 

vd 1.19 0.17 0.03 

vd-ss(1) 0.94 0.14 0.00 

vd-ss(2) 0.94 0.14 0.00 
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For Table 7, we aggregated demand for the 57 products to the brand-name level to facilitate 

comparisons. The proposed vd-ss(1) model predict overall demand of 2,196 units from our 516 

respondents. Actual demand in the shelf task was 2,120. The extant model predicts a demand of 

2,953 units, over-predicting demand by almost 40%. 

Table 9: Brand-Level Demand Predictions (Air Fresheners) 

Brand Actual vd vd-ss(1) vd-ss(2) 

Renuzit 1,137 1,675 1,256 1,225 

Glade 479 750 559 555 

Febreze 311 245 177 174 

BrightAir 63 39 28 29 

CitrusMagic 51 105 77 77 

ArmHammer 40 14 10 10 

CaliforniaScent 39 126 88 89 

Total 2,120 2,953 2,196 2,162 

Relative  139% 104% 102% 

 

4. SUMMARY AND CONCLUSION 

Volumetric conjoint analysis with set size variation is a great tool for policy simulations that 

involve the addition or removal of several choice alternatives at the same time. In two 

applications, we have demonstrated the ability of our approach to produce accurate predictions 

while the extant model is prone to over-predictions (by 40%–80%). However, drivers of 

secondary demand and market share predictions seem largely unaffected by choice-set size 

variation. 

If the main interest is to understand and predict market shares, discrete choice conjoint may 

be sufficient. However, when volume predictions are a key objective, volumetric conjoint can be 

a powerful tool—provided that the proposed set size adjustment specification is used. 

The proposed model has implications for conjoint analysis, data fusion and modeling 

transaction data. All these applications can involve significant variation in choice-set size. 

Transaction data can include assortment changes over time, or varying assortment sizes in 

different stores. Data fusion involving choice experiments and transaction data is likely to 

involve dramatically different set sizes. 

There are some limitations of our study: We only show applications to conjoint, but 

application to transaction data or a combination of transaction and choice experiment data could 

provide further evidence for the validity of the model. Transaction data would also allow study of 

stockpiling and purchase timing and may require attention to issues of endogeneity. It might be 

interesting to study the consequences of controlling for set size variation when modeling 

stockpiling or other endogeneity issues. 
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The model is implemented in the echoice2 package, which is available on github: 

https://github.com/ninohardt/echoice2 

  

 Nino Hardt Peter Kurz 
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