
1 23

Quantitative Marketing and
Economics
QME
 
ISSN 1570-7156
Volume 18
Number 4
 
Quant Mark Econ (2020) 18:343-380
DOI 10.1007/s11129-020-09226-7

How to generalize from a hierarchical
model?

Max J. Pachali, Peter Kurz & Thomas
Otter



1 23

Your article is published under the Creative

Commons Attribution license which allows

users to read, copy, distribute and make

derivative works, as long as the author of

the original work is cited. You may self-

archive this article on your own website, an

institutional repository or funder’s repository

and make it publicly available immediately.



Published online: 17 2020May

Quantitative Marketing and Economics (2020) 18: 343–380
https://doi.org/10.1007/s11129-020-09226-7

How to generalize from a hierarchical model?

Max J. Pachali1 ·Peter Kurz2 ·Thomas Otter3

Received: 17 April 2018 / Accepted: 1 April 2020 /
© The Author(s) 2020

Abstract
Models of consumer heterogeneity play a pivotal role in marketing and economics,
specifically in random coefficient or mixed logit models for aggregate or individ-
ual data and in hierarchical Bayesian models of heterogeneity. In applications, the
inferential target often pertains to a population beyond the sample of consumers pro-
viding the data. For example, optimal prices inferred from the model are expected to
be optimal in the population and not just optimal in the observed, finite sample. The
population model, random coefficients distribution, or heterogeneity distribution is
the natural and correct basis for generalizations from the observed sample to the mar-
ket. However, in many if not most applications standard heterogeneity models such as
the multivariate normal, or its finite mixture generalization lack economic rationality
because they support regions of the parameter space that contradict basic economic
arguments. For example, such population distributions support positive price coef-
ficients or preferences against fuel-efficiency in cars. Likely as a consequence, it is
common practice in applied research to rely on the collection of individual level mean
estimates of consumers as a representation of population preferences that often sub-
stantially reduce the support for parameters in violation of economic expectations.
To overcome the choice between relying on a mis-specified heterogeneity distribu-
tion and the collection of individual level means that fail to measure heterogeneity
consistently, we develop an approach that facilitates the formulation of more econom-
ically faithful heterogeneity distributions based on prior constraints. In the common
situation where the heterogeneity distribution comprises both constrained and uncon-
strained coefficients (e.g., brand and price coefficients), the choice of subjective prior
parameters is an unresolved challenge. As a solution to this problem, we propose a
marginal-conditional decomposition that avoids the conflict between wanting to be
more informative about constrained parameters and only weakly informative about
unconstrained parameters. We show how to efficiently sample from the implied pos-
terior and illustrate the merits of our prior as well as the drawbacks of relying on
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means of individual level preferences for decision-making in two illustrative case
studies.
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1 Introduction

Models of consumer heterogeneity play a pivotal role in marketing and economics.
Typical applications are random coefficients or mixed logit models for aggregate or
panel data (e.g., Revelt and Train 1998 and Train 2009), and hierarchical Bayesian
models. Influential applications of these models involve inference from household
scanner panel data or from discrete choice experiments (e.g., Allenby and Lenk 1994,
Rossi et al. 1996, Allenby et al. 1998, Dubé et al. 2010, and Sawtooth 2013). In
most applications, the inferential target pertains to a population beyond the sample
of consumers providing the data for model calibration. For example, pricing, product
design, or product line decisions informed by the sample data through the model are
expected to be optimal in the population and not just in the observed, finite sample.
The population model, the heterogeneity or random coefficients distribution is the
natural and correct basis for generalizations from the observed sample of consumers
or respondents to the market. The fact that inferences about parameters of this dis-
tribution are consistent in the sample size (N), even if the number of observations
contributed by each consumer (T ) is very small, makes this approach attractive from
a statistical perspective.

Unfortunately, standard population distributions often lack economic rational-
ity. For example, Reiss and Wolak (2007) remark that the estimated distribution of
marginal utility of fuel economy in Berry et al. (1995) suggests that about half of
consumers in the car market dislike fuel economy. As another example, Dubé et al.
(2008, 2010) find support for positive price coefficients in the inferred heterogeneity
distribution. Such economically unreasonable characterizations of consumer hetero-
geneity prevent meaningful counterfactual predictions from the model. As an obvious
example, models that support positive price coefficients in the inferred heterogeneity
distribution preclude model based price optimization.

While a completely theory driven specification of heterogeneity distributions
appears to be beyond reach, some authors argue in favor of theory driven constraints
in the population distribution (e.g., Boatwright et al. 1999 and Allenby et al. 2014).
The goal is a heterogeneity model that is maximally flexible regarding some aspects
of the population distribution, but deterministically constrained by economic the-
ory regarding other aspects of this distribution. This paper builds on this idea and
develops it further.

In applications, a prior understanding of preferences in the population often sug-
gest a large number of sign and order restrictions, for example: that the price
parameter in an indirect utility function is negative or that consumers prefer a more
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fuel efficient to a less fuel efficient car, everything else equal. So called constrained
parameter problems are relevant across academic fields and a body of literature dealt
with this topic. Gelfand et al. (1992) provide an overview of how to impose sign
and order constraints based on truncated distributions using Gibbs sampling. Allenby
et al. (1995) introduce this approach into marketing in the context of individual level
conjoint analysis. Boatwright et al. (1999) develop a sampler in the spirit of Gelfand
et al. (1992), but for a hierarchical sales response regression model.

However, sign and order restrictions in models of heterogeneity still present unre-
solved challenges. In principle, one could adopt truncated normal distributions that
implement prior constraints as outlined in Gelfand et al. (1992) for heterogeneity
distributions. However, as we show below, any truncated distribution of heterogene-
ity leads to a so called “doubly intractable” inference problem. The log-normal prior
avoids this difficulty. The basic idea of using log-normal distributions to implement
sign and order constraints is not new. For example, Allenby et al. (2014) use the
exponential transformation, βp = − exp(β∗

p) with β∗
p ∈ R distributed according to a

hierarchical normal mixture prior, to enforce that the model has zero support for posi-
tive price coefficients. In this specification, the problem is that β∗

p is measured on the
log scale and standard diffuse subjective prior settings imply absurdly large and small
values of transformed coefficients βp (e.g., Allenby et al. 2014).1 In the common
situation where the heterogeneity distribution thus comprises both constrained and
unconstrained coefficients, the choice of subjective prior parameters is an unresolved
challenge.

As a solution to this problem we propose a marginal-conditional decomposition
that avoids the conflict between wanting to be more subjectively informative about
constrained parameters and only weakly informative about unconstrained parameters.
We show that this decomposition is important whenever the heterogeneity distribu-
tion comprises a mix of constrained and unconstrained coefficients, e.g., brand and
price coefficients. Our decomposition applies both to the fully parametric multivari-
ate normal setting as well as to its semi-parametric generalizations. In addition, we
show how to efficiently sample from the implied posterior building on the likelihood
based pre-tuning of proposal densities in Rossi et al. (2005).

Finally, we contrast profit implications of relying on the inferred population dis-
tribution to an ad-hoc approach that approximates heterogeneity using means of
individual level coefficients. This latter approach is still common in applied aca-
demic and industry research. It is ad-hoc because if fails to measure heterogeneity
consistently, distorting inference towards the population mean. As a consequence,
markets will misleadingly appear too homogeneous, translating into too little prod-
uct differentiation and too much price competition in counterfactual calculations. A
side-effect of this distortion is a reduction of sign and order violations in the approx-
imated heterogeneity distribution that likely contributed to the popularity of this
ad-hoc approach.

1See also Peter Rossi’s vignette on the impact of prior specifications in constrained parame-
ter problems: https://cran.r-project.org/web/packages/bayesm/vignettes/Constrained MNL Vignette.html.
Accessed: 20th November 2019.
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In a nutshell the goal of this paper is to facilitate the formulation of more eco-
nomically faithful hierarchical prior distributions of heterogeneity for better market
simulators and improved counterfactual calculations. We thereby hope to broaden
the applicability of models of heterogeneity, and to convince applied academic and
industry researchers to abandon market simulators built on means of individual level
preferences. The remainder of the paper proceeds as follows: Section 2 formally
introduces different ways of generalizations from hierarchical Bayesian models and
discusses implications for market simulation. In Section 3 we develop the hierarchical
prior formulation and in Section 4 we discuss efficient sampling of individual level
coefficients. Section 5 then investigates the relative performance of the proposed
approach using simulated data. Sections 6 and 7 report the results from two empiri-
cal illustrations based on household scanner panel data on purchases of fresh hen’s
eggs (Kotschedoff and Pachali 2020) and data from a discrete-choice experiment on
tablet PCs. Finally, we summarize and discuss results in Section 8.

2 Different ways of generalizations andmarket simulations

Different ways of generalizing from hierarchical models to consumer preferences,
choices, and market shares in the target population are best illustrated in a decision
theoretic framework. For this purpose, and without loss of generality, we abstract
away from competition and fixed costs, and assume constant marginal prices and
costs in the following. If the decision-maker knew the distribution of preferences in
the population denoted as p(β|τ), he would choose the action a ∈ A that maximizes
profits

∫
π(a, β) p(β|τ) dβ = Eβ|τ [π(a, β)] = π(a) by solving the following

maximization problem:

max
a∈A

{

π(a) ∝ (P (a) − C(a))

∫
MS(a, β)p(β|τ) dβ

}

(1)

Here MS(a, β) is the market share from action a and preference β, as implied by
a choice model, C(a) denotes marginal costs associated with action a, and P(a)

the marginal price, which may itself constitute an action; thus (P (a) − C(a)) is
the contribution margin. Finally, the proportionality results from ignoring the market
size.

Because the preference distribution in the population is generally unknown,
the decision-maker forms an expectation about profits based on data Y =(
y1 . . . yi . . . yN

)
, where yi is the Ti-vector of observations from individual i

in the sample, and based on prior assumptions about the choice model underly-
ing MS(a, β), the distribution of preferences in the population p(β|τ), and the
parameters τ in this distribution. He then maximizes the posterior expected profit:

π̂(a) = Eβ|Y [π(a, β)] ∝ (P (a) − C(a))

∫
MS(a, β)p(β|τ)p(τ |Y ) d (β, τ ) (2)

This estimator of expected profits entirely relies on posterior knowledge of the
hierarchical prior distribution. We thus refer to this approach as “generalizing based
on the hierarchical prior”. It is easily computed to an arbitrary degree of precision
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based on MCMC draws from the posterior distribution p(τ |Y ) coupled with draws
from the hierarchical prior distribution p(β|τ). However, because it entirely relies
on the posterior of the hierarchical prior, all prior parametric assumptions will come
to bear. If, for example, the hierarchical prior supports positive and negative price
coefficients as in a normal distribution, the posterior of the hierarchical prior will
necessarily—and may substantially—support positive price coefficients. The prob-
lem may persist even if the data reliably locate all individual specific posterior price
coefficient distributions in the negative domain. The reason is that the best nor-
mal approximation matches the first and second moment of the distribution to be
fitted, which may result in substantial support for positive coefficients even if all
coefficients to be fitted are negative.

To mitigate the extrapolation of parametric assumptions in directions that violate
economic theory, market simulators often rely on the collection of individual level
posterior mean estimates {β̂i}Ni=1 where β̂i = ∫

βip(βi |Y, yi)dβi —the shrinkage
of individual level posterior means to the population mean in general reduces the
number of sign and order violations, albeit at the expense of severely inconsistent
inferences about heterogeneity. Expected profits from action a are then estimated as:

π̂(a) ∝ (P (a) − C(a))
1

N

N∑

i=1

MS(a, β̂i) (3)

However, as we illustrated in Appendix A.1, this estimator that aggregates opti-
mal, in the sense of a bias-variance trade-off, individual level estimates, itself fails
optimality criteria and is inconsistent no matter how large the sample of consumers
N , as long as individual level likelihoods are not perfectly informative about indi-
vidual level preferences. In practice, individual level likelihoods tend to be diffuse,
which motivates hierarchical models in the first place.

A third estimator of expected profits from action a builds on the collection of
individual level posterior distributions. We refer to this form of generalization as
lower level model non smoothed (n.s.) because it relies on the lower, individual level
models, but does not summarize individual level posteriors to estimates.

π̂(a) ∝ (P (a) − C(a))
1

N

N∑

i=1

∫
MS(a, βh)p(βh|yi, τ )p(τ |Y ) d (βh, τ ) (4)

The difference between this estimator and that defined in Eq. 2 is that yi is used
both to inform the posterior p(τ |Y ) and the prediction to new consumers’ preferences
in p(βh|yi, τ ). When individual level posterior distributions essentially degenerate
to a point because of highly informative individual level likelihoods, the estimator in
Eq. 4 converges to that defined in Eq. 3. When individual level posterior distributions
come from diffuse individual level likelihoods, as usual, the estimator in Eq. 4 will
be very similar to that in Eq. 2. Thus, parametric assumptions in the hierarchical
prior distributions will be similarly influential. Consistent with these assessments, we
only find negligible differences between generalizations based on the posterior of the
hierarchical prior and lower level model n.s. in the empirical applications discussed
below.
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What way of generalization should we use for market simulation in practice?
Every trained Bayesian analyst will point out the inconsistency associated with rely-
ing on the collection of individual level posterior means. Such an analyst knows
that posterior predictive preference distributions as defined in Eqs. 2 and 4 allow for
consistent inference (in N), however conditional on functional form assumptions.

However, because standard parametric and semi-parametric assumptions such as
multivariate normal or its finite mixture generalization violate basic economic intu-
ition in many applications, consistency conditional on these assumptions is not too
helpful. Thus, many applied researchers and practitioners opt for generalizations,
i.e., market simulation based on the collection of individual level posterior means
(Eq. 3) that often substantially reduce the share of sign and order violations. We aim
to overcome the choice between relying on the posterior of a mis-specified hierarchi-
cal prior and the collection of individual level posterior means that fail to measure
heterogeneity, by showing how to specify more economically faithful hierarchical
prior distributions based on prior constraints. The goal is a hierarchical prior that both
is maximally flexible regarding some aspects of the population distribution of pref-
erences, and deterministically constrained by theory regarding other aspects of this
distribution.

3 Sign and order constraints

Sign and order constraints dogmatically express prior knowledge about the support of
a distribution, e.g., that the price parameter in an indirect utility function is negative
or that a consumer prefers a more fuel efficient to a less fuel efficient car for sure,
everything else equal. So called constrained parameter problems are relevant across
academic fields and a body of literature dealt with this topic. Gelfand et al. (1992)
provide an overview of how to impose sign and order constraints based on truncated
distributions using Gibbs sampling. Allenby et al. (1995) introduce this approach
into marketing in the context of individual level conjoint analysis. Boatwright et al.
(1999) develop a sampler in the spirit of Gelfand et al. (1992), but for a hierarchical
sales response regression model.

However, the implementation of sign and order restrictions in hierarchical
Bayesian models is still without a generally accepted solution. In principle, one could
adjust the sampler outlined by Gelfand et al. (1992) to hierarchical settings. How-
ever, as we show next, any truncation applied to the prior (and hence to the posterior)
of individual level coefficients in a hierarchical setting leads to a so called “doubly
intractable” inference problem in the hierarchical prior. Doubly intractable problems
are characterized by a normalization constant that depends on target parameters (e.g.,
Möller et al. 2006 and Murray et al. 2006). Consider the following truncated normal
hierarchical prior for consumers’ demand parameters:

p(β|β̄, Vβ) = ϕ(β|β̄, Vβ)

Z(β̄, Vβ)
1(β ∈ R

k
c), (5)
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where R
k
c denotes the truncation region of a k-dimensional demand parameter vec-

tor β, ϕ denotes the multivariate normal density and Z(β̄, Vβ) the corresponding
normalizing constant:

Z(β̄, Vβ) =
∫

Rk
c

ϕ(β|β̄, Vβ)dβ (6)

The conditional posterior distribution of parameters indexing the hierarchical prior
then becomes:

p(β̄, Vβ |{βi}) ∝
N∏

i=1

ϕ(βi |β̄, Vβ)

Z(β̄, Vβ)
1(βi ∈ R

k
c)p(β̄, Vβ), (7)

where p(β̄, Vβ) denotes the subjective prior for hierarchical prior
parameters. Equation 7 is an example of a doubly intractable infer-
ence problem because even after dropping the normalization constant
∫ (∏N

i=1
ϕ(βi |β̄,Vβ)

Z(β̄,Vβ)
1(βi ∈ R

k
c)p(β̄, Vβ)

)
d{β̄, Vβ} of the posterior giving rise to the

proportionality, we are left with the intractable expression Z(β̄, Vβ). This expression
normalizes the multivariate normal density to the region of support defined by R

k
c

and cannot be dropped because it depends on target parameters β̄ and Vβ .2

As a consequence of truncation, we loose the convenience of conditionally conju-
gate updates of hierarchical prior parameters β̄ and Vβ regardless of what subjective
prior distributions we employ. More generally, all estimation and sampling tech-
niques that require the evaluation of the conditional “likelihood” p({βi}|β̄, Vβ) =
∏N

i=1
ϕ(βi |β̄,Vβ)

Z(β̄,Vβ)
, including standard Metropolis-Hastings sampling, are hamstrung

by the intractability of Z(β̄, Vβ).3 Boatwright et al. (1999) propose to numerically
approximate Z(β̄, Vβ) at each MCMC iteration using the GHK algorithm (Hajivas-
siliou et al. 1996). While this seems reasonable in their application that involves
sign constraints on at most four parameters in a model with five parameters in total,
numerical approximations will be problematic in the high-dimensional parameter
spaces, potentially involving a multiplicity of constraints that have become common
in applications more recently.

The log-normal hierarchical prior avoids this difficulty. The basic idea of using
log-normal distributions to implement sign and order constraints is not new. For
example, Allenby et al. (2014) use the exponential transformation, βp = − exp(β∗

p)

2Note that without truncation, i.e., when Rk
c = R

k , Z(β̄, Vβ) = 1 for all regular β̄ and Vβ .
3Some researchers simply ignore Z(β̄, Vβ) in the update of upper level parameters, i.e., use standard
updates based on p(β̄, Vβ |{βi}) ∝ ∏N

i=1 ϕ(βi |β̄, Vβ)p(β̄, Vβ). This “solution” results in an incoher-
ent model in the sense that data generating parameters may not be recovered, even from infinitely large
samples.
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with β∗
p ∈ R and distributed according to a hierarchical normal mixture prior,

to enforce that the model has zero support for positive price coefficients. In this
specification, the problem is that β∗

p is measured on the log scale and standard dif-
fuse subjective prior settings imply absurdly large and small values of transformed
coefficients βp (e.g., Allenby et al. 2014).

Thus, the problem is how to specify differentially informative subjective priors
for constrained coefficients and unconstrained coefficients. The standard Normal-
Inverse-Wishart (NIW) subjective prior for means and covariance matrices in the
hierarchical prior distribution is limited in this regard—mostly because the prior con-
centration of the IW-prior is controlled by a single parameter (the prior degrees of
freedom also known as the prior shape).

Next, we present a solution to this problem that re-parameterizes the hierarchical
prior. Our contributions in this context are, first, a marginal-conditional decomposi-
tion of the hierarchical prior distribution that enables the analyst to be differentially
informative about the distribution of constrained and unconstrained parameters in
the population a priori4, and second, the generalization of the pre-tuning of proposal
densities in Rossi et al. (2005) to this hierarchical prior.

The proposed marginal-conditional decomposition becomes essential whenever
the hierarchical prior comprises both constrained and unconstrained parameters such
as e.g., in simple hierarchical choice models that feature brand coefficients and a
price coefficient. The proposed generalization of pre-tuned proposal densities (Rossi
et al. 2005) is particularly important in high dimensional models that feature a
multiplicity of constraints.

3.1 Marginal-conditional decomposition

Our hierarchical prior starts with a standard normal distribution.5 Unconstrained
coefficients have a normal hierarchical prior while sign and order constraints are
imposed through exponential transformations of normal variates resulting in log-
normally distributed coefficients. Vice versa, we can log-transform from sign and
order constrained parameters that enter the likelihood to unconstrained, a priori con-
ditionally normally distributed variates. We formulate subjective priors over this
unconstrained space but use a marginal-conditional decomposition to implement
vastly different subjective priors for parameters that are exponentiated and those that
are not.

We denote g : Rk → R
k
c as the function that maps normally distributed variates

β∗
i to sign and order constrained coefficients βi that enter multinomial likelihoods

explaining individual choice data yi . We distinguish kc “constrained” coefficients

4See McCulloch et al. (2000) for another example of specifying flexible priors for covariance matrices.
5We focus on the single component normal model to minimize notational clutter. The generalizations to
mixtures of normals is straightforward.
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β∗c
i , i.e., coefficients to be transformed to obey sign and order constraints, and kuc

unconstrained coefficients β∗uc
i in the hierarchical prior.

yi |g(β∗
i ) ∼ MNL

(
yi |g(β∗

i )
)

β∗
i ∼ N

(
β̄∗, Vβ∗

)
, or

(
β∗c

i

β∗uc
i

)

∼ N

((
μ∗

c

μ∗
uc

)

,

(
Vβ∗

11
Vβ∗

12
Vβ∗

21
Vβ∗

22

))

(8)

With the goal of formulating rather different subjective priors for the parameters
governing the distribution of β∗c

i and β∗uc
i , we re-express the multivariate normal

distribution in Eq. 8 in the form of a multivariate regression model that regresses
unconstrained coefficients β∗uc

i on “constrained” coefficients β∗c
i :

B∗uc = (
ι B∗c

)
(

z′
�

)

+ U vec(U ′) ∼ N(0, IN ⊗ �) (9)

Here, B∗uc and B∗c are matrices with kuc and kc columns, respectively, and N

rows each, collecting unconstrained and “constrained” coefficients from individuals
in the sample, and ι is a (N × 1)-vector of 1’s; � is a (kc × kuc) matrix of regres-
sion coefficients, z a column vector of intercept coefficients of length kuc, and � is
the (kuc × kuc) conditional variance-covariance of unconstrained coefficients in the
population.

The first two moments of the distribution of “constrained” coefficients are
obtained from yet another multivariate regression model that regresses “constrained”
coefficients on a vector of constants:

B∗c = ι(μ∗
c )

′ + UV ∗ vec(U ′
V ∗) ∼ N(0, IN ⊗ V ∗) (10)

Here, ι is again a (N ×1)-vector of 1’s and V ∗ is the marginal variance-covariance
matrix of constrained coefficients. The multivariate regression models in Eqs. 9 and
10 imply the following re-parameterization of the joint distribution of β∗

i from Eq.8:

β∗
i ∼ N

((
μ∗

c

�′μ∗
c + z

)

,

(
V ∗ V ∗�
�′(V ∗)′ �′V ∗� + �

))

(11)

The advantage of the re-parameterization in Eq. 11 relative to the more stan-
dard parameterization in Eq. 8 is that we can now specify arbitrarily informative
subjective priors for the hierarchical prior distribution of “constrained” coefficients,
i.e., for the parameters μ∗

c and V ∗ without restricting the prior of unconstrained
coefficients. That is, if we a priori set V ∗ to a “small” covariance matrix, we can nev-
ertheless elect to be minimally informative about the distribution of unconstrained
parameters through �. Coupled with weakly informative priors for � and z, neither
the correlation between “constrained” and unconstrained nor the marginal mean of
unconstrained coefficients is directly affected by informative prior specifications for
μ∗

c and V ∗.
However, the role of the prior on� in the implied prior for the covariance of uncon-

strained coefficients (see the lower right block of the covariance matrix in Eq. 11)
requires additional discussion. A priori, an increasing number of constrained coeffi-
cients coupled with a diffuse prior on � implies a marginal prior for the variance of
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Table 1 Quantiles of marginal
prior densities for a constrained
coefficient with informative and
standard weakly informative
subjective priors

Informative Weakly informative

1% −1.934E+03 −2.576E+10

25% −8.977E+00 −1.054E+03

50% −9.914E-01 −1.049E+00

75% −1.132E-01 −1.031E-03

99% −5.098E-04 −3.951E-11

unconstrained coefficients that may appear as favoring larger variances. In this con-
text, it is important to keep in mind that the variance contribution through� is through
the covariance between “constrained” and unconstrained coefficients (see the upper
right and lower left block of the covariance matrix in Eq. 11). Thus, the prior impli-
cation of large marginal variances of unconstrained coefficients stems from “mixing”
over strong and qualitatively different (positive or negative) dependencies between
constrained and unconstrained coefficients. However, strong dependence between
“constrained” and unconstrained coefficients constitutes an extremely informative
hierarchical prior. Hence, “mixing” over strong and qualitatively different (positive
or negative) dependencies between constrained and unconstrained coefficients is not
a possibility a posteriori, not even in small data sets. For example, even smallish
data sets will enforce a choice between the two highly informative opposites of
strong positive and strong negative dependence between a constrained and an uncon-
strained coefficient. In sum, large variances of unconstrained coefficients through �

a posteriori result from strong dependence between “constrained” and unconstrained
coefficients as per the likelihood.

Before going into more detail about suggested subjective choices, we illustrate the
problem of formulating sensible priors for constrained coefficients in the smallest
possible example where βi = − exp(β∗

i ), β∗
i ∼ N(β̄∗, Vβ∗). Here, the subjective

prior is on parameters β̄∗ and Vβ∗ in the normal distribution that generates β∗
i . Under

what is widely considered a weakly informative subjective prior setting6 for β̄∗ and
Vβ∗ , we obtain that a priori 25% of the constrained coefficients {βi} are larger than
−.001, i.e., very close to zero, and another 25% are smaller than −1054 (see the right
column in Table 1).

This concentration of mass in the tails of the prior is undesirable and counter to
what one would expect from a weakly informative prior for βi . The prior for βi in
the column on the left in Table 1 has lower (upper) quartiles of −8.977 (−.113) and
appears to be much more reasonable for, say, the population distribution of price coef-
ficients in a heterogeneous multinomial logit model. However, this marginal prior
distribution requires subjective priors for β̄∗ and Vβ∗ discussed next that in most
applications would be considered unduly informative as a prior for unconstrained
coefficients where βi = β∗

i .

6We follow Rossi et al. (2005) in the specification of a weakly informative subjective prior setting. Specif-
ically, for a single parameter problem and based on the paramterization in Eq. 12: Aμ∗

c
= 0.01, νV ∗ = 6

as well as V̄ ∗ = νV ∗ .
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We use the fully conjugate prior for (�z, �), where �z := (
z, �′)′, and the

conditionally conjugate prior for (μ∗
c , V

∗):
p (�z, �) = p (�z|�)p(�)

γz|� ∼ N(γ̄z, � ⊗ A−1
�z

), γz := vec (�z)

� ∼ IW(ν�, �̄) and

p(μ∗
c , V

∗) = p(μ∗
c )p(V ∗),

μ∗
c ∼ N(μ̄∗

c , A
−1
μ∗

c
)

V ∗ ∼ IW(νV ∗ , V̄ ∗) (12)

The conditionally conjugate prior for (μ∗
c , V

∗) enables the researcher to directly
express prior beliefs about the distribution of “constrained” coefficients in the pop-
ulation. We set μ̄∗

c = (
0 . . . 0

)′, Aμ∗
c

= 0.1Ikc , νV ∗ = kc + 15 as well as V̄ ∗ =
0.5νV ∗Ikc , where Ikc is the identity matrix of dimension kc × kc (cf. Allenby et al.
2014). Especially the choice of prior degrees of freedom νV ∗ , i.e., the shape parame-
ter in the IW prior for V ∗, would be considered unduly informative as a default value
in the context of only unconstrained parameters. However, our marginal-conditional
decomposition of the hierarchical prior enables the analyst to be arbitrarily informa-
tive about the hierarchical prior for “constrained” coefficients, essentially without
affecting the marginal hierarchical prior for unconstrained coefficients.

The fully conjugate prior for (�z, �) adjusts the influence of the subjective prior
on �z as a function of the conditional variance-covariance�, which is desirable in sit-
uations without much prior knowledge. We use standard weakly informative, “barely
proper” priors for parameters in the conditional hierarchical prior of unconstrained
coefficients, γ̄z, A�z, ν�, �̄.

Our marginal-conditional decomposition corresponds to the directed acyclic graph
in Fig. 1 which shows that the hierarchical prior for “constrained coefficients”,
(μ∗

c , V
∗), and that of unconstrained coefficients, (�z, �), are independent condi-

tional on draws of “constrained” coefficients, B∗c. This conditional independence
relationship gives rise to a Gibbs-sampler for the two-stage update of parameters in
the hierarchical prior:

1. β∗
i |(μ∗

c , V
∗), (�z, �), yi, i = 1, . . . , N

Fig. 1 Marginal-conditional
decomposition DAG
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2. {�z, �} |B∗uc, B∗c

3.
{
μ∗

c , V
∗} |B∗c

In step 1, we use a random walk Metropolis-Hastings (RW-MH) step to draw
individual level parameters

{
β∗

i

}
based on multinomial logit likelihoods, similar to

Rossi et al. (2005). However, as described in detail in the following Section 4, we
need to account for the change of variables in g : Rk → R

k
c when tuning the MH-

proposal using information from the likelihood. In step 2, we use a Gibbs-sampler to
update �z and �, i.e., parameters in a fully conjugate multivariate regression model,
conditional on both “constrained” and unconstrained coefficients and subjective prior
parameters (omitted for simplification). Step 3 employs another Gibbs-step to update
(μ∗

c , V
∗), i.e., parameters in a conditionally conjugate multivariate regression model,

conditional on “constrained” coefficients and subjective prior parameters. Appendix
A.2 details the posterior distributions associated with steps two and three.

4 Efficient MH-sampling

Next we discuss efficient sampling of individual level part worth coefficients {β∗
i }

based on pre-tuned proposal densities in a MH-sampler conditional on draws of hier-
archical prior parameters (Rossi et al. 2005). Our algorithmic implementation is for
a MNL model at the individual level, but the approach obviously generalizes to other
likelihoods. The pre-tuning in Rossi et al. (2005) employs a normal approximation
to the likelihood. The MNL-likelihood information about {βi} can be computed in
closed form. However, our hierarchical prior is on the distribution of {β∗

i }; therefore,
we need to account for the change-of-variables in g : Rk → R

k
c .

Following Rossi et al. (2005), we specify the proposal density of the RW-MH
sampler as follows

β∗cand
i ∼ N

(

β∗r
i , c2

(
H ∗

i + (V r
β∗)−1

)−1
)

, (13)

where r ∈ {1, . . . , R} is the r-th iteration of the MCMC chain, c denotes a fixed
scaling factor and H ∗

i is the Hessian information about β∗
i in individual i’s data,

evaluated at the maximum of the following fractional likelihood:

lfracti

(
{yi}Ni=1 |g(β∗

i )
)

= MNL
(
yi |g(β∗

i )
)1−w

MNL
(
{yi}Ni=1 |g(β∗

i )
)w(Ti/T̄ )

(14)
This fractional likelihood is defined as aw-weighted combination of the individual

specific likelihood and the likelihood of a model that pools all observations, where
Ti is the number of choice observations from individual i and T̄ is the total number
of choices made by all individuals in the calibration sample.

At the maximizing value β̌i we can straightforwardly transform to β̌i
∗
by stan-

dard maximum likelihood theory. We obtain the corresponding H ∗
i in Eq. 15, taking

advantage of the closed form expression for the information about βi , denoted Hi ,
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from individual i’s choices in the MNL model, and accounting for the change of
variable to a first order approximation.7

H ∗
i ≈ (

Jg

)′
HiJg (15)

Here Jg is the k × k Jacobian of the function g(β∗
i ) that maps conditional normally

distributed variates β∗
i to their sign and order constrained counterparts βi . Hi and Jg

are evaluated at β̌i and g−1(β̌i) = β̌i
∗
respectively, i.e., at the parameter value that

maximizes the fractional likelihood in Eq. 14.
Appendix A.4 illustrates the value of the proposed tuning in the MH-upate of β∗

i

in a small simulation that only involves choices of one individual. We find that the
proposed tuning results in a sampler that is on average about 3.7 times more efficient
than that using a simpler and more standard tuning (see Table 15). We note that these
differences can magnify substantially in a hierarchical setting.

5 Simulation study

Next we illustrate the benefits of our proposed marginal-conditional decomposition
in the presence of sign and order constraints using simulations. First, we com-
pare prior distributions in the prototypical setting that combines constrained and
unconstrained coefficients. Second, we analyze the posterior from simulated data
under different priors and elaborate on the numerical properties of the proposed
methodology.

5.1 Drawing from prior distributions

Suppose a hypothetical setting with two attributesA1 andA2 at two levelsL1 andL2
each, yielding four possible product configurations. Both levels of the first attribute
provide positive utility to every consumer, and its second level is weakly preferred
to the first, again by all consumers. To reflect these sign and order restrictions, we
denote the respective coefficients as {β+,i} and {β++,i}, where i = 1, . . . , N indexes
simulated consumers. Preferences for the levels of the second attribute are heteroge-
neous but without a uniform prior direction or ordering, such as e.g., the preferences
for colors or flavors in applications. We denote the respective coefficients as {βuc1,i}
and {βuc2,i}. The price coefficient is negative. We thus have the following set of
constraints for every consumer i = 1, . . . , N :

β+,i , β++,i ≥ 0

β++,i ≥ β+,i

βp,i ≤ 0 (16)

First, we compare (implied) marginal priors for coefficients β = g(β∗) based on
the marginal-conditional decomposition in Eq. 11 and a more standard parameteri-

7Appendix A.3 provides the derivation of the exact Hessian of transformed coefficients. We found
improvements from using the exact Hessian to be small in applications, relative to the first order
approximation in Eq. 15.
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Fig. 2 Marginal prior distributions of β+ (left panel) and βuc1 (right panel) using the marginal-conditional
decomposition and the standard formulation

zation (Eq. 8) coupled with the more informative subjective prior settings suggested
in Allenby et al. (2014). Allenby et al. (2014) propose to adjust the standard weakly
informative prior settings to k + 15 (from k + 5) prior degrees of freedom for the
IW-prior (where k denotes the dimension of individual demand parameters) in the
standard one-component model, and to set the diagonal elements in the prior scale
matrix to 0.5 for constrained coefficients and to 1 for unconstrained coefficients. In
addition, the subjective prior information for β̄∗ is increased to Aμ∗ = .1 (from .01).

However, as described before, the problem with the standard parameterization is
that these more informative subjective settings now apply to both constrained, i.e., to
be transformed, and to unconstrained coefficients. While these settings yield much
more sensible priors for constrained coefficients, they may be unduly informative for
unconstrained coefficients.

Figure 2 compares prior distributions based on R = 1, 000, 000 draws from
the positively constrained marginal prior for β+ (left panel) and the unconstrained
marginal prior for βuc1 (right panel).8 In each panel of Fig. 2 the dashed density
in orange is from our proposed marginal-conditional specification. The green dash-
dotted density is the corresponding marginal prior from Allenby et al. (2014). The
figure illustrates the benefit from our proposed parameterization: While marginal
priors for the constrained coefficient in the left panel are essentially identical, the
standard parameterization coupled with the more informative settings discussed
above imply a much more informative marginal prior for unconstrained coefficients
than usual. At first sight, the comparison in the right-panel of Fig. 2 seems to suggest
that the standard parameterization coupled with the more informative settings from
above simply imply less heterogeneity in βuc1 a priori. However, it is important to
realize that the increase in prior degrees of freedom in the IW prior will similarly fail
to accommodate much more homogenous markets than what is implied by the prior

8Without loss of generality, we fix � to zero here, see the discussion following Eq. 11.
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settings. In fact, it is the joint possibility of extremely homogenous and extremely
heterogenous markets under our suggested prior that causes the pronounced peak at
zero together with the fat, sub-exponential tails in the right panel of Fig. 2.

Next, we illustrate how the difference in subjective priors translates into different
posteriors in the typical large N , small T setting.

5.2 Population distribution and data generation

We generate heterogeneous consumer preferences obeying sign and order constraints
in Eq. 16 using the following transformation and distribution:

β∗ =

⎛

⎜
⎜
⎜
⎜
⎝

β∗+
β∗++
β∗

p

β∗
uc1

β∗
uc2

⎞

⎟
⎟
⎟
⎟
⎠

= g−1 (β) =

⎛

⎜
⎜
⎜
⎜
⎝

ln (β+)

ln (β++ − β+)

ln
(−βp

)

βuc1

βuc2

⎞

⎟
⎟
⎟
⎟
⎠

∼ N
(
β̄∗, Vβ∗

)
, with :

β̄∗ = (
0.5 −0.5 0.8 2.5 2.5

)′ and

Vβ∗ =

⎛

⎜
⎜
⎜
⎜
⎝

0.4 0.1 0 0 0
0.1 0.2 −0.15 0 0
0 −0.15 0.4 −0.05 0.05
0 0 −0.05 2 0
0 0 0.05 0 4

⎞

⎟
⎟
⎟
⎟
⎠

(17)

Table 2 summarizes the marginal distributions of data generating preferences in
the population. Consumers have a decent preference for the two levels of A1 and are
relatively price sensitive on average. Preferences for the two levels of A2 have the
same expected value, but are more heterogeneous for the second level. Preferences
for the first and second level of A1 correlate positively. Furthermore, consumers who
prefer the second level of A1 are less price sensitive on average, Cov(β∗++, β∗

p) =
−0.15. Similarly, consumers who prefer the first level of A2 are less price sensitive
while preferences for the second level correlate positively with the absolute value of
the price coefficient.

We generate a sample of N = 1000 consumers with preferences {βi} from this
population distribution as input to generating discrete choice data Y . Each choice
is from the full set of product alternatives at different, randomly drawn prices from
a uniform distribution with support in [0.5, 3], plus an outside good. Consequently,
there are p = 5 alternatives in each choice set. We fix the amount of individual level
information at T = 4. Recall that many discrete choice studies in marketing barely

Table 2 Summary of marginal
distributions of data generating
coefficients

β+ β++ βp βuc1 βuc2

Median 1.65 2.31 -2.22 2.50 2.50

Mean 2.00 2.68 -2.71 2.50 2.50

Variance 2.00 2.38 3.65 2.00 4.00
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Table 3 Mapping between data generating and estimated (identified) parameters illustrated in one choice
set

Alternative Data generating utility Estimated utility

(A1L1, A2L1, P1) (β+ + βuc1 ) + P1βp βid
uc1

+ P1β
id
p

(A1L2, A2L1, P2) (β++ + βuc1 ) + P2βp (βid++ + βid
uc1

) + P2β
id
p

(A1L1, A2L2, P3) (β+ + βuc2 ) + P3βp βid
uc2

+ P3β
id
p

(A1L2, A2L2, P4) (β++ + βuc2 ) + P4βp (βid++ + βid
uc2

) + P4β
id
p

Outside 0 0

reach one choice task per parameter to estimate at the individual level. The sparse
individual level data scenario assumed in this simulation is therefore representative
of applications in practice.

We remove the column pertaining to the first level of A1 from the design matrix
for identification.9 Table 3 shows the mapping between data generating and identified
parameters derived from the design matrix. Since we delete the first level of A1 from
the design, it follows that βid++ = β++ − β+, βid

p = βp, βid
uc1

= βuc1 + β+ as well as
βid

uc2
= βuc2 + β+.

5.3 Estimates of heterogeneity

Figure 3 illustrates the benefits of our proposed marginal-conditional decomposition
of the hierarchical prior distribution (see Eqs. 9, 10 and 11) compared to the standard
formulation (see Eq. 8) coupled with informative subjective prior settings (Allenby
et al. 2014) using the example of the unconstrained coefficients βid

uc1
and βid

uc2
.10

It is visually apparent that the standard parameterization (Eq. 8) that cannot but
impose informative priors on both constrained and unconstrained parameters, when
constrained parameters require more informative priors, underestimates the amount
of preference heterogeneity in the unconstrained coefficients (see the green dashed-
dotted densities in Fig. 3). Note that the bias from unduly informative priors on

9In principle, the MCMC sampler could navigate the unidentified model at the individual level based
on a proper (hierarchical) prior. Non-identification implies that two different vectors of preferences β1

and β2 with β1 �= β2 can achieve the exact same likelihood maximum. In an unidentified model, the
sampler then generates from the infinite number of different states of the same (high) likelihood for any
individual i. However, this interferes with measuring preference heterogeneity in the population. Consider
the case of two brands offered in a choice set without an outside option. Only the relative brand preference
is likelihood-identified. Now consider two different individuals i and j having the exact same relative
preferences. We could set βi = (

βi1 − ε βi2 − ε
)′ as well as βj = (

βj1 + ε βj2 + ε
)′ and create

arbitrarily large preference heterogeneity for ε → ∞, while the likelihood of observed choices remains
constant.
10Note that the normal hierarchical prior for βid

uc1
and βid

uc2
used in estimation no longer exactly corre-

sponds to the data generating heterogeneity distribution in this example. The data generating marginal
distributions of βid

uc1
and βid

uc2
are sums of normally and log-normally distributed random variables, as per

our identification constraint, and a mixture of normals prior may further improve generalizations to the
population based on the (posterior of) the hierarchical prior.
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Fig. 3 Posterior predictive population distributions of βid
uc1

and βid
uc2

using the marginal-conditional
decomposition and the standard formulation (T = 4)

unconstrained coefficients further amplifies in the context of a mixture of nor-
mals prior where fewer observational units contribute likelihood information about
the amount of heterogeneity in each mixture component (see Section 6). Finally,
Appendix A.5 reports MH-acceptance rates and MCMC trace plots for a qualitative
gauge of the numerical performance of the proposed MCMC algorithm that relies on
the marginal-conditional decomposition of parameters in the hierarchical prior.

6 Preferences for fresh hen’s eggs

Our first empirical application analyzes Nielsen data on purchases of fresh hen’s eggs
by German households (see Kotschedoff and Pachali 2020). It illustrates the empiri-
cal relevance of the proposed marginal-conditional decomposition of the hierarchical
prior. In Germany, eggs are differentiated in terms of animal welfare as summarized
in Table 4.

Table 4 Main differences between egg breeding categories

Egg label Hens Surface per Outdoor area Additional

per m2 hen in cm2 per hen in m2 points

Organic 6 1667 4 Organic feed, no beak trimming,

no regular use of antibiotics

Free-range 9 1100 4 Live in open barns

Barn 9 1100 0 Live in open barns

Battery 18 550 0 Live in cages

Source: http://www.deutsche-eier.info/die-henne/haltungsformen/; accessed 2 March 2016.
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Since 2004, EU regulations require labeling the breeding category on egg pack-
ages and printing a code on each single egg indicating origin and breeding category.
Consumers associate the four breeding categories with different quality levels: bat-
tery eggs� barn eggs� free-range eggs� organic eggs. In 1999 the EU decided that
all member states ban the production of battery eggs by 2012. Germany implemented
this ban already in 2010. Kotschedoff and Pachali (2020) (KP) use this policy change
to evaluate the effect of this increase in minimum quality standard on consumer wel-
fare. They use a sample of 6,961 households who purchased eggs at least four times
in the period of 2008 to 2012.11

The demand model in KP assumes that households have full information about
the egg products offered by the ten retail chains included in the sample. Accordingly,
household i’s indirect utility from egg product g in chain l at period t is

Uiglt = γi,g + αipglt + βi1{unitsg = 6} + ψi,l + εiglt , (18)

where g ∈ {Battery, Barn, F ree-range, Organic} and l ∈ {1, . . . , 10}. The indi-
cator variable, 1{}, denotes whether egg label g has the package size six instead of
ten eggs. The price is given by pglt and the mean utility of the outside option is nor-
malized to zero, uiglt = 0. The error terms εiglt is assumed to follow a type I extreme
value distribution, as standard in the literature.

KP state that flexible estimation of the retail chain preference coefficients
{
ψi,l

}

is particularly important in their demand specification, alleviating a potential bias
from the full information assumption implicit to Eq. 18: It is crucial that retail
chain preference coefficients become very negative—potentially approaching nega-
tive infinity—for those chains a household never or very infrequently purchased eggs
from. If a retail chain is estimated to be extremely unattractive to a consumer, the egg
prices charged at this chain will not affect this consumer’s egg purchasing decisions,
independent of the consumer’s actual price knowledge set. In addition, KP rely on the
inferred information about

{
ψi,l

}
when modeling competition among retail chains in

a supply side model.
Here, we rely on the simplified demand framework in Eq. 18 to illustrate the ben-

efits of our marginal-conditional decomposition model as developed in Section 3.12

The model is an example of the typical application featuring a mix of constrained and
unconstrained coefficients in the context of a hierarchical model. While we cannot a
priori constrain preferences for the retail chains and the battery egg taste coefficient,
which measures preferences for battery eggs over the outside good, it seems meaning-
ful and actually important to constrain the remaining parameters. This is because the
amount of price variation across quality tiers in this data vastly exceeds the amount
of temporal price variation within quality tiers. As a consequence, a household who

11Furthermore, they only consider purchases at the top ten retail chains and define boiled and painted eggs
as well as eggs from other type of poultry, e.g., quails and gooses, as outside good.
12KP in addition control for seasonality and regime changes. However, these controls are irrelevant for the
purpose of the illustration here.
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Table 5 Restricted attributes
and constraints imposed on
levels

Restricted Attributes Constraints

Price α ≤ 0

Package size β ≤ 0

Egg label γBattery ≤ γBarn ≤ γFree-range ≤ γOrganic

is only observed to purchase the highest price alternative (organic eggs) could be
rationalized as exhibiting positive preferences for high prices in a model without
economically motivated constraints. Similarly, an unconstrained model could mis-
leadingly rationalize the choice pattern of a household who only purchased the lowest
price alternative (battery eggs) based on higher (direct utility) preferences for battery
eggs than for qualitatively superior alternatives.

We thus employ the constraints summarized in Table 5. Preferences for the four
different egg labels should satisfy the quality ordering implied by Table 4 to identify
the price coefficient. Everything else equal, for example, a household should not
be worse off consuming an organic egg instead of a battery egg. Furthermore, the
coefficient for the smaller package size and the price coefficient are constrained to
be negative.

Table 6 provides an overview of the number of egg purchase incidents across
households in the estimation sample. For most households, we observe a decent num-
ber of purchases, resulting in “positive degrees of freedom” at the individual level.
The lack of individual level information motivating the use of a hierarchical model
is due to the small amount of within quality tier price variation as compared to price
variation across quality tiers.

We compare our model (see Eqs. 9 to 11) to the standard formulation (see Eq. 8)
coupled with the informative subjective prior advanced in Allenby et al. (2014).
These authors propose a somewhat tighter IW-prior for the variance-covariance
matrix in a three component mixture of multivariate normals with prior degrees
of freedom equal to k + 25 (where k is the dimensionality of the individual level
model). In addition, they set the diagonal elements in the prior scale matrix to 0.5
for unconstrained coefficients and to 0.05 for constrained coefficients in each nor-
mal component. Note that we adjust prior degrees of freedom to k + 40 accounting
for the fact that, similar as in KP, we rely on a five component (instead of a three
component) mixture of normals model in the estimation below.

Compared to the informative subjective prior advanced in Allenby et al. (2014),
our marginal-conditional decomposition of the hierarchical prior distribution enables
the analyst to be differentially informative about the distribution of constrained and

Table 6 Distribution of the
number of egg purchase
incidents across N = 498
households used in the
estimation sample

Min. 1st Qu. Median Mean 3rd. Qu. Max.

Purchases 4 21 45 56 81 283
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Fig. 4 Posterior predictive population distributions using the marginal-conditional decomposition model
and a standard model with informative priors for the battery egg coefficient (left panel) as well as the
preference coefficient of the fifth retail chain (right panel)

unconstrained parameters in the population a priori. We use the following subjective
settings affecting the prior of constrained coefficients in every mixture component:
μ̄∗

c = (
0 . . . 0

)′, Aμ∗
c

= 0.1Ikc , V̄
∗ = 0.05νV ∗Ikc as well as νV ∗ = kc + 40, where

Ikc is the identity matrix of dimension kc × kc. However, in contrast to Allenby et al.
(2014), we can elect to use standard weakly informative, “barely proper” priors for
parameters in the conditional prior of unconstrained coefficients: γ̄z = (

0 . . . 0
)′,

A�z = 0.01I(kc+1), �̄ = ν�Ikuc as well as ν� = kuc + 5.

Table 7 Variances of marginal
posterior densities unconstrained
preference coefficients implied
by the marginal-conditional
decomposition model and a
standard model with informative
priors

Marginal-Conditional Informative

Battery 25.0 15.8

Chain 2 60.2 36.1

Chain 3 19.0 13.7

Chain 4 42.7 19.9

Chain 5 38.8 22.0

Chain 6 21.1 14.9

Chain 7 21.8 13.4

Chain 8 25.6 15.6

Chain 9 24.1 15.6

Chain 10 38.3 15.9
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Table 8 Comparison of log
marginal likelihood values
across model specifications

Marginal-Conditional parameterization Standard parameterization

(selectively informative) (informative)

−38853 −39001

In order to reduce implied computation times, we draw a random subsample of
N = 498 households and estimate a model with a five components mixture of
normals prior under these two different subjective prior settings.13

Figure 4 shows posterior predictive population distributions for the (uncon-
strained) battery egg coefficient as well as the coefficient measuring preferences for
retail chain 5.14 Both graphs in Figure 4 confirm the finding from the simulation
study in Section 5: By imposing an informative prior on all coefficients (that is really
needed for the constrained coefficients only) the standard formulation results in the
dashed-dotted densities in green, which underestimate heterogeneity in these uncon-
strained coefficients. This is particularly apparent in the right panel of Fig. 4, where
the marginal posterior from the standard parameterization of the hierarchical prior
(see Equation 8)—when coupled with informative subjective priors needed to “disci-
pline” the distribution of constrained coefficients—fails to accommodate extremely
negative preferences for retail chain 5 in the left tail.

Table 7 summarizes variances of marginal posterior predictive densities of uncon-
strained coefficients and verifies that the differences across the two subjective prior
specifications are substantial. Finally, Table 8 compares model fit based on the
Newton-Raftery estimator of the log marginal likelihood. As one may expect, the
indistinctively informative specification in the standard prior parameterization (see
Eq. 8) translates into inferior fit compared to the informative specification that
selectively targets constrained coefficients facilitated by the marginal-conditional
decomposition in Eqs. 9 to 11.

7 Tablet PC preferences

Our second empirical application uses data from a commercial discrete-choice con-
joint study investigating demand for tablet PCs (“tablets”). Here, we focus on the
drawbacks of relying on individual level posterior means β̂i = ∫

βip(βi |Y, yi)dβi

for market simulation (as defined in Section 2), and estimate implied losses in prof-
its when relying on this method for decision-making. For estimation, we rely on
the marginal-conditional decomposition of the hierarchical prior (see Section 3).
We show how using posterior means translates into systematic over estimation of

13We run both MCMC samplers for R = 120, 000 iterations and keep every 40th draw. We then burn-
off the first 2000 draws and perform our analysis based on the remaining 1000 draws from the converged
posterior distribution. We assess convergence by inspecting time-series plots of draws, both at the level of
individual respondents and in the hierarchical prior.
14We estimate individual retail chain preferences relative to a baseline chain for likelihood identification,
i.e., for l �= 1, ψ̂i,l = ψi,l − ψi,1 measures household i’s preference for the lth retailer relative to the first
as the baseline level.
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Table 9 Attributes and levels in the tablet experiment

Attributes Levels

Resolution (RE) Standard (S), High (H)

Memory 8GB, 16GB, 32GB, 64GB, 128GB

SD-Slot With (SD), Without (SD−)
Performance (PER) 1 GHz (S), 1.6 GHz (H), 2.2 GHz (VH)

Battery run time (RUN) 4-8 hours (S) , 8-12 hours (H)

Connections (CO) WLAN (S), WLAN + UMTS (3G), WLAN + LTE (4G)

Synchronization to smartphone No (SYN−), Yes (SYN)
Value pack No (VP−), Yes (VP)
Equipment No (EQ−) , Cover (C), Keyboard (K), Mouse (M),

Pencil (P), 32GB Memory Card (32MC), Keyboard

& Pencil (KP), Keyboard & Mouse & Pencil (KMP)

Price (P) Continuous in [99 e,899 e]

Cash back No (CB−), 50e, 100e, 150e
Brand (B) A, B, C, D, E, F, G

Operating system (OS) A, B

Display size (DS) 7, 8, 10, 12, 13

preferences for sign- and order-constrained attribute levels. Finally, we show empir-
ically how relying on individual level posterior means reduces sign and order
violations, in the absence of a theoretically constrained hierarchical prior—arguably
a major reason for the popularity of this approach in practice.

Table 9 lists the tablet attributes and attribute levels included in this study. Overall,
there are fourteen attributes including a seven level brand attribute. Because of the
commercial origin of the data, brand names are disguised. A total of N = 1046
respondents participated in this study.

Each respondent evaluated thirteen choice sets (T = 13), indicating which if any
of the tablets offered in a choice set the respondent would purchase. Each choice set
featured three tablets, and an unspecified outside option. Respondents selected the
outside or no-buy option in about a quarter (26.6%) of the observed 1, 046 × 13 =
13, 598 choices. Thus, this is a representative example of the type of high-dimensional
“large N , small T ” studies that have become the standard in industry applications.

The original goal of this study was to help optimize brand A’s product design
given a fixed set of competitor offerings. As typical of industry grade discrete-choice
conjoint studies, the number of parameters at the individual level (36 coefficients
after imposing identification constraints) by far exceeds the number of individual
level observations. As a consequence, a hierarchical model is required, the hierarchi-
cal prior’s specification becomes critically important, and—in the likely scenario of
heterogeneous preferences—individual level posterior distributions will reflect large
amounts of posterior uncertainty about a specific respondent’s preferences.

In combination with the ordinal nature of many of the attributes in this study, a
standard hierarchical prior specification leads to questionable results. For instance,
Fig. 11 and Table 17 in Appendix A.6 showcase that posterior predictive distributions
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from an unconstrained hierarchical prior specification coupled with weakly informa-
tive subjective priors (e.g., Rossi et al. 2005) clearly violate basic economic intuition.
Inferred preferences for levels of cash back refer to the amount of money a cus-
tomer receives after purchase upon submitting the sales receipt to the manufacturer.
According to Table 17 (Appendix A.6), more than 25% of draws from the posterior
of the hierarchical prior imply that consumers dislike tablets with larger amounts of
cash back. Perhaps even more problematic, the posterior of the hierarchical prior sug-
gests that consumers in the market prefer a tablet with 100e cash back over the same
tablet with 150e cash back (as indicated by the stochastic dominance of 100e cash
back across all quantiles of the marginal posterior predictive distribution). In a mar-
ket simulation, this could give rise to the odd outcome that tablets with smaller levels
of cash back will be offered at higher prices, everything else equal. Finally, Table 18
(Appendix A.6) shows that the collection of individual level posterior means cuts the
support for negative preferences for e.g., 50e cash back by about 50%. Recall that
what may appear as a benefit here is the consequence of measuring heterogeneity
inconsistently. These observations call for a diligently constrained hierarchical prior
distribution of heterogeneity in the population.

The majority of attributes and levels in Table 9 are such that one can expect
every respondent to strictly prefer one level over another level, everything else equal.
Table 10 collects all ordinal and sign constraints we thus impose in the hierarchical
prior distribution, based on (direct) utility considerations. We constrain preferences
for eleven out of the fourteen attributes. We do not impose constraints on brand, oper-
ating system, and display size. Although some brands may be preferred on average,
it would be wrong to impose the average preference ordering for every respondent,
similar with operating systems. Display size may appear as an ordinal attribute at
first, but is not once the inconvenience of larger displays in some usage situations,

Table 10 Restricted attributes and constraints imposed on levels

Restricted Attributes Constraints

Resolution βREH
≥ βRES

Memory β128GB ≥ β64GB ≥ β32GB ≥ β16GB ≥ β8GB

SD-Slot βSD ≥ βSD−

Performance βPERV H
≥ βPERH

≥ βPERS

Battery run time βRUNH
≥ βRUNS

Connections βCO4G ≥ βCO3G ≥ βCOS

Synchronization to smartphone βSYN ≥ βYSYN−

Value pack βVP ≥ βVP−

Equipment βEQC
, βEQK

, βEQM
, βEQP

, βEQ32MC
≥ βEQ−

βEQKP
≥ βEQK

, βEQP

βEQKMP
≥ βEQKP

, βEQM

Price βP ≤ 0

Cash back βCB150 ≥ βCB100 ≥ βCB50 ≥ βCB−
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or when transporting the tablet, are taken into account. As a consequence, we face a
mix of constrained and unconstrained coefficients that we argue is characteristic of
most applications of hierarchical models, at least in marketing and economics. We
leverage the marginal-conditional decomposition of the hierarchical prior distribution
developed in Section 3 to specify suitable subjective priors.

We run the MCMC sampler using the tuned random walk proposal from Section 3
for R = 500, 000 iterations and keep every 50th draw. We then burn-off the first
8000 draws and perform our analysis based on the remaining 2000 draws from the
converged posterior distribution. We assess convergence by inspecting time-series
plots of draws, both at the level of individual respondents and in the hierarchical prior.
Here, we only report results for a model with a fully parametric, one-component
hierarchical prior.15

Figure 5 visually compares the marginal posterior predictive population densi-
ties of coefficients measuring preferences for levels of the cash back attribute.16

The utility of the level ’no cash back’ is normalized to zero for identification,
and individual preferences for 50e, 100e, and 150e cash back are obtained as
βCB50,i = exp(β∗

CB50,i
), βCB100,i = βCB50,i+exp(β∗

CB100,i
), and βCB150,i = βCB100,i+

exp(β∗
CB150,i

), respectively. This way, the coefficient measuring the preference for
50e relative to no cash back is constrained to be positive, and coefficients associated
with more cash back are constrained to be weakly larger than those associated with
less cash back.

The upper left panel of Fig. 5 shows inferred population preference distributions
for 50e cash back relative to no cash back (the dash-dotted density in red). Now,
if one imposes the constraints we use here and characterizes population preferences
using individual level posterior means, the dashed blue density results. Because of the
skewness of population preferences as a function of ordinal preferences, individual
level posterior means now measure both mean preferences and heterogeneity in the
population inconsistently. The mode is biased in the direction of the distribution’s
skewness, i.e., in the direction of stronger preferences for 50e cash back relative to
the baseline. Compared to the population distribution implied by the posterior of the
hierarchical prior, relying on the collection of individual level posterior means clearly
underestimates the percentage of consumers with only weak preferences for 50e
cash back. The remaining two panels show how this bias persists, if not accentuates
for 100e and 150e cash back.

Figure 6 illustrates inferred population preference distributions for display size 8
and 10. We see—in line with the illustration in Appendix A.1—that the collection of
individual level posterior means underestimates the degree of taste heterogeneity for
these two display sizes.

15We find that adding more normal components in a semi-parametric mixture model does not improve
holdout predictions.
16The marginal posterior of the hierarchical prior and lower level model (n.s.) predictive distributions are
essentially identical in this application. Hence we focus on the former.
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Fig. 5 Posterior predictive population densities for the levels of the cash back attribute using posterior
means and the posterior of the hierarchical prior

7.1 Predictive Performance and losses in profits

Next we illustrate the implications of these biases for predictive performance. We use
the holdout log-likelihood (HLL) as a measure of how well the two forms of gen-
eralization predict choices of holdout respondents, i.e., individuals that were not part
of the estimation sample. While it is common to report hit probabilities and hit rates,
holdout log-likelihoods are the adequate measure if the eventual target is the predic-
tion of market shares. The holdout likelihood (HL) of individual h ∈ {1, . . . , H }
is defined as the probability of observing the choices yh ∈ Yhold implied by the
model after fitting it to the training data Ytrain. When relying on the posterior of the
hierarchical prior and the collection of individual level posterior means, the HL of
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Fig. 6 Posterior predictive population densities of display size 8 (left panel) and 10 (right panel)
coefficients using posterior means and the posterior of the hierarchical prior

individual h’s choices is defined as in Eqs. 19 and 20 , respectively. In each case
HLL(Yhold) = ∑H

h=1 ln(HL(yh)).

HL(yh) =
∫

MNL
(
yh|g(β∗

h)
)
p

(
β∗

h |β̄∗, Vβ∗
)
p

(
β̄∗, Vβ∗ |Ytrain

)
d

(
β∗

h, (β̄∗, Vβ∗)
)

(19)

HL(yh) = 1

N

N∑

i=1

MNL
(
yh|β̂i

)
, (20)

We evaluate the predictive performance of the population preference distributions
inferred from the collection of individual level posterior means and the posterior of
the hierarchical prior using five-fold cross validation. K-fold cross-validation is a
common approach to compare the predictive performance of different models for
model choice (see e.g., Bishop 2006). We split the complete set of N = 1046 choice
vectors randomly into five disjoint subsets of approximately the same size. Y k

train and
Y k
hold denote the k-th training and holdout sample, containing the data from about 800

Table 11 Predictive
performance (holdout
log-likelihoods, five-fold
cross-validation) of different
forms of generalization

Posterior Means Hierarchical Prior

Fold 1 −2499 −2466

Fold 2 −2606 −2598

Fold 3 −2810 −2755

Fold 4 −2761 −2718

Fold 5 −3512 −3454

Mean −2837 −2798
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Table 12 Specification of products offered by brand A’s competitors

RE ME SD PER RUN CO SYN VP EQ P CB OS DS

Brand C High 16GB Without 1.6 GHz 8-12 h. 4G Yes Yes K 650e 50e B 10

Brand D Standard 64GB With 2.2 GHz 4-8 h. 4G No No No 499e No A 10

Brand G High 32GB Without 1 GHz 8-12 h. 4G No Yes KP 799e 150e A 12

(4 folds) and 200 (1 fold) respondents, respectively. The cross-validation estimator
for the holdout log-likelihood is defined as the average of the holdout log-likelihoods
across the five disjoint holdout data sets (Bengio and Grandvalet 2004):

CVHLL(Y ) = 1

K

K∑

k=1

∑

yh∈Y k
hold

HLL
(
A(Y k

train), yh

)

= 1

K

K∑

k=1

HLL
(
A(Y k

train), Y
k
hold

)
, (21)

HLL(A(Y k
train), yh) denotes the predictive log-likelihood for holdout individual h

in the k-th fold computed conditional on training data Y k
train as input (see Eqs. 19–20).

The computations always use the same hierarchical Bayes model re-estimated using
the respective training data, but summarized either using the collection of individual
level posterior means, or the posterior of the hierarchical prior.

Table 11 summarizes the cross-validation results. A random guess for the choices
of holdout respondents results in an average log-likelihood of −3770 across our five
folds of data. Thus, the hierarchical model yields a decent improvement relative to
random predictions, regardless of how the model is summarized for predictions to
choices by new respondents. In terms of the comparison between relying on the col-
lection of individual level posterior means and the posterior of the hierarchical prior,
the latter outperforms the former not only on average but also in every single fold.17

Next we investigate the optimal product configuration for brand A. There are
460,800 product opportunities for brand A in this study. We assume that brand A a
priori fixes the levels of some attributes in order to make this problem manageable in
the context of varying cost scenarios. We assume that brand A only offers tablets with
operating system A, 8-inch display, no SD slot, a 32GB memory card, no smartphone
synchronization, and 50e cash back. These assumptions reduce the action space to
360 unique product possibilities. For a market scenario, we assume that brands C, D,
G are already in the market (Table 12).

17The five-fold cross-validation log-likelihoods using the unconstrained model are −2997 and −2894
based on posterior means and the posterior of the hierarchical prior, respectively. Constraining the hierar-
chical prior therefore improves the predictive performance of the model, and regardless of how the model
is translated into posterior predictions.
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Table 13 Minimum, mean and
maximum of product-specific
costs illustrated for five cost
scenarios

1st 5th 10th 15th 20th

Min. 30 48 71 93 116

Mean 31 74 127 180 234

Max. 31 101 189 276 364

To more generally capture differences between optimal actions implied by the
different approaches of generalizing to the market, we specify a grid of possible costs.
This grid comprises 20 different cost settings and is constructed as follows. First,
costs are assumed to be the same for the weakest level of each attribute within each
scenario. Within attributes, we assume that the cost difference between the baseline
and (weakly) preferred levels is determined by a constant factor, i.e. cL2 = f ∗
cL1, cL3 = f ∗ 2 ∗ cL1, cL4 = f ∗ 3 ∗ cL1, . . . , for the levels of a priori ordered
attributes; L1 is the least preferred level. We set f = 3 in this example and obtain 20
different scenarios by changing the cost of producing the least preferred levels {cL1}
of the ordinal attributes to be optimized.

Table 13 summarizes the distribution of product-specific costs across the 360
product opportunities for the first, fifth, tenth, fifteenth and twentieth cost scenario.
As can be seen, the grid includes both small as well as large absolute cost differ-
ences. In the first cost scenario, it is straightforward for brand A to offer a tablet
combining the most attractive attribute levels, i.e., high resolution, 128GB, 2.2 Ghz,
8 − 12 hours battery, WLAN + LTE (4G), and a value pack, from the attributes to
be optimized. As cost differences between attribute levels increase, it becomes less
and less profitable to offer this high quality combination of attributes and we com-
pute the expected loss caused by relying on a suboptimal form of generalization
each time.

Table 14 summarizes the distribution of brand A’s expected percentage losses
incurred by relying on the collection of individual level posterior means relative
to inferred actions based on the posterior of the hierarchical prior ahp across cost
scenarios. We find that optimization results that rely on the collection of indi-
vidual level posterior means to represent market preferences are clearly inferior
and the average percentage loss of 6.68% from using this latter method seems
substantial.

Table 14 Percentage losses
from using posterior means
across cost scenarios relative to
optimal actions from the
posterior of hierarchical prior

Minimum Mean Maximum

Posterior Means 1.162 6.683 12.193
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8 Discussion

Models of consumer heterogeneity play a pivotal role in marketing and economics.
Typical applications are random coefficients or mixed logit models for aggregate or
panel data and hierarchical Bayesian models. Historically, statistical efficiency or
computational arguments motivate the choice of heterogeneity model (e.g., Allenby
and Ginter 1995 and Lenk et al. 1996). However, what can be learned about and subse-
quently extrapolated from the inferred heterogeneity distribution is limited by functio-
nal form assumptions such as e.g., the assumption of multivariate normally distributed
preferences. For example, consistent estimates of the first and second moments, and
correlations in the heterogeneity distribution—all which can be accomplished based on
a multivariate normal prior—will fail to translate into useful market simulators in the
context of highly non-normal distributions, e.g., distributions that are highly asymmetric.

Various semi-parametric formulations have been advanced (e.g., Lenk and
DeSarbo 2000, Li and Ansari 2014 and Rossi 2014) to overcome the often unreal-
istic assumptions about higher moments inherent to the multivariate normal prior.
The additional flexibility afforded by semi-parametric formulations is an important
step towards more faithful prior population formulations. However, if as usual the
parametric component in a semi-parametric model provides full prior support for
all coefficients in a model, the semi-parametric model should still be considered a-
theoretical and thus mis-specified from an economic point of view. For example,
a mixture of normals a priori supports positive price coefficients and this support
vanishes a posteriori only in limiting cases of little practical relevance.

The problem with standard, statistically motivated prior population distributions
has been recognized in the academic literature early on (see the pioneering contri-
bution by Boatwright et al. 1999), but no general solution has emerged. Recently,
Allenby et al. (2014) introduced an informative subjective prior specification for
log-normal hierarchical priors. These priors are easily implemented (compared to
the truncated normal in Boatwright et al. 1999), but require the analyst to depart
from the standard weakly informative subjective prior settings in hierarchical models
(e.g., Rossi et al. 2005). In the common situation where the heterogeneity distribu-
tion comprises both constrained and unconstrained coefficients (e.g., brand and price
coefficients), the choice of subjective prior parameters is an unresolved problem for
which this paper proposes a solution.

The contribution of this paper is a marginal-conditional decomposition of the
population distribution that allows researchers to be informative about constrained
parameters, on a logarithmic scale, while retaining maximal flexibility regarding the
(conditional) hierarchical prior of unconstrained coefficients. The suggested specifi-
cation is easily implemented and the additional computational effort is minimal.

Our specification becomes essential whenever the heterogeneity distribution com-
prises both constrained and unconstrained coefficients such as e.g., in heterogeneous
or mixed choice models that feature brand coefficients and a price coefficient. Finally,
we develop how to tune individual level proposal densities for numerically efficient
MCMC inference in the presence of sign- and order-constraints. This generalization
of pre-tuned proposal densities (Rossi et al. 2005) is particularly important in high
dimensional models that feature a multiplicity of constraints.
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We thus overcome the choice between a mis-specified heterogeneity distribu-
tion and a the common ad-hoc use of the collection of individual level means that
fail to measure heterogeneity consistently. The marginal-conditional decomposition
developed in this paper facilitates the formulation of more economically faithful het-
erogeneity distributions based on prior constraints, broadening the applicability of
hierarchically formulated choice and demand models in marketing and economics.

An aspect of the subjective prior for order constrained coefficient that we have
not explored in this paper, but plan to investigate in future research, is that of prior
scale differences and dependence between coefficients for an ordinally constrained
attribute. It is easy to verify by simulation that prior scale differences and dependence
can be used to express structured beliefs about heterogeneity in ordinal preferences.
For example, the population could be heterogeneous in their valuation of a lower
level of an ordinal attribute but relatively homogeneous in incremental preferences
for the next higher level. Alternatively, the population could exhibit substantial het-
erogeneity in the incremental valuation of the next higher level. Finally, the amount
of heterogeneity in the increment could be correlated with the valuation of the lower
level, such that low, medium, or high valuations of the lower level co-occur with
relatively more heterogeneity in the incremental valuation of the higher level.

Last but not least, it could be interesting to compare (a mixture of) multivariate
truncated normal distributions to the log-normal prior formulation used in this paper.
The recently proposed exchange algorithm can handle the “double-intractability” due
to the intractable normalization of the truncated multivariate normal (Möller et al.
2006; Murray et al. 2006; see Kosyakova et al. (2020) for a recent adaptation of the
exchange algorithm in marketing).
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AppendixAppendix A

A.1 Illustrating inconsistent inference for heterogeneity when based on posterior
means of individual coefficients

We illustrate the drawbacks of relying on individual level means in the prototypi-
cal “large N small T ” situation. We show that aggregating individual level estimates
results in inconsistent market level inferences that lack a bias-variance trade-off jus-
tification. Therefore, the collection of individual level posterior means is not a valid
non-parametric representation of the distribution of heterogeneity in the population.
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Fig. 7 Posterior predictive population distributions of βid
1 from N = 200 (left panel) and N = 3000 (right

panel), T = 3

Figure 7 illustrates this aspect in a simplified simulation setting estimating indi-
vidual level part-worths for five brands.18 The graphs compare marginal posterior
densities of the contrast between the second and the first brand β2 − β1 = βid

1 in
the population for the two sample sizes N = 200 and N = 3000 in this exam-
ple. The blue dashed line depicts the distribution of individual level posterior means,
the red two-dashed line the distribution implied by the posterior of the hierarchi-
cal prior, p(β̄id , V id

β |data, prior), and the black solid line corresponds to the data

generating density.19 In this example, each consumer provides T = 3 choices and
each choice set features three randomly chosen brands. Thus, the amount of likeli-
hood information at the individual level is small, reflecting the common situation of
“negative degrees of freedom” at the individual level in e.g., choice-based-conjoint
analysis (see Lenk and Orme 2009 for a discussion of the trend towards complex
individual level models). Comparing posterior densities in the graphs, it is visually
apparent that the collection of individual level posterior means—where each indi-
vidual posterior mean is shrunk towards the population average—results in biased
inference about the heterogeneity distribution in the population, and regardless of the
number of consumers in the sample. In fact, this bias towards the center of the pop-
ulation preference distribution is increasing in the sample size N illustrating how
the collection of individual level posterior means as a representation of preference
heterogeneity fails consistency in N .

18Data generating part-worths are from a multivariate normal distribution, β ∼ N(β̄, Vβ) with mean
β̄ = (

0 0.1 0.2 0.3 0.4
)′ and variance-covariance matrix Vβ = diag

(
1 1.5 2 2.5 3

)
representing

the population of consumers.
19Densities are estimated using a hierarchical Bayesian MNL model over the identifiable parameters with
standard weakly informative subjective prior settings as described in e.g., Rossi et al. (2005).
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A.2 Posterior distributions: log-normal prior

We set B∗c
z := (

ι B∗c
)
in what follows. The posteriors associated with the priors in

Eq. 12 are (see e.g., Rossi et al. 2005):

�|B∗uc, B∗c
z ∼ IW

(
ν� + N, �̄ + S�

)

γz|B∗uc, B∗c
z , � ∼ N

(
γ̃z, � ⊗ (

(B∗c
z )′B∗c

z + A�z

)−1
)

, with

γ̃z := vec(�̃z), �̃z = (
(B∗c

z )′B∗c
z + A�z

)−1
(
(B∗c

z )′B∗c
z �̂z + A�z �̄z

)
,

�̂z = (
(B∗c

z )′B∗c
z

)−1
(B∗c

z )′B∗uc, and

S� =
(
B∗uc − B∗c

z �̃z

)′ (
B∗uc − B∗c

z �̃z

)
+

(
�̃z − �̄z

)′
A�z

(
�̃z − �̄z

)
(22)

μ∗
c |B∗c, V ∗ ∼ N

(
μ̃∗

c , Ãμ∗
c

)

V ∗|B∗c, μ∗
c ∼ IW

(
ν̃V ∗ , Ṽ ∗) with

Ãμ∗
c

=
(
N(V ∗)−1 + Aμ∗

c

)−1
,

μ̃∗
c = Ãμ∗

c

((
ι′ ⊗ (V ∗)−1

)
vec

(
(B∗c)′

) + Aμ∗
c
μ̄∗

c

)
,

ν̃V ∗ = νV ∗ + N and Ṽ ∗ = V̄ ∗ + (
B∗c − ι(μ∗

c )
′)′ (

B∗c − ι(μ∗
c )

′) (23)

A.3 Exact Hessian of transformed variates

The Hessian information about β∗
i in individual i’s data is defined as

H ∗
i = ∂2li

∂β∗
i ∂β∗′

i

, (24)

where li := MNL(yi |g(β∗
i )) denotes individual i’s likelihood function.

Taking first derivative yields

∂li

∂β∗′
i

= ∂li

∂g(β∗
i )′

∂g(β∗
i )

∂β∗′
i

, (25)

according the chain rule. We define ∇li := ∂li
∂g(β∗

i )′ as a k-dimensional row vector

and Jg := ∂g(β∗
i )

∂β∗′
i

as the (k × k)-Jacobian matrix. Accordingly, each element j ∈
{1, . . . , k} in Equation 25 can be expressed as

[
∂li

∂β∗′
i

]

j

= [
l̄i
]
j

:= ∇liJ
j
g , (26)
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where J
j
g denotes the j th column of Jg . Hence

H ∗
i =

(
∂
[
l̄i
]
1

∂β∗
i

. . .
∂
[
l̄i
]
j

∂β∗
i

. . .
∂
[
l̄i
]
k

∂β∗
i

)

, (27)

with:

∂
[
l̄i
]
j

∂β∗
i

= J ′
gHiJ

j
g + ∂J

j
g

∂β∗
i

∇l′i (28)

A.4 Illustrating the value of the proposed tuning

Our small illustration only involves choices by one individual, i.e., no unobserved
heterogeneity. Inside goods are characterized by one five level, ordinal attribute:

β∗ = g−1(β) = (
β1 ln(β2 − β1) ln(β3 − β2) ln(β4 − β3) ln(β5 − β4)

)′

= ( −1 0.2 0.5 −0.1 −0.5
)′ (29)

The individual chooses repeatedly (T = 20 and T = 1000) from choice sets that
contain all five possible inside goods and an outside good with utility normalized to
zero according to an MNL model. We compare the numerical performance of our
tuned MCMC chain to a simpler, more standard tuning with β∗cand

i ∼ N
(
β∗

i , c2I
)
.

Our target quantity are numerical standard errors of posterior means denoted numSE

from MCMC chains of length 1,000,000 initialized at data generating values. The
numerical standard error approximates the variation in posterior means across dif-
ferent, independent same length runs of the MCMC, after convergence. The tuning
parameter c2 in the simpler, more standard proposal density is optimized target-
ing the average of numerical standard errors across the five parameters on the grid(
0.01 0.06 0.11 . . . 1.46

)
. This parameter is set to its default value of c2 = 1 (see

Rossi et al. 2005) in our proposed tuning scheme.

Table 15 Numerical efficiency of MCMC, standard versus proposed tuning, N = 1, T = 20 and T =
1000

T = 20 T = 1000

Standard Proposed tuning Standard Proposed tuning

numSE1 0.0562 0.0168 0.0116 0.0039

numSE2 0.1232 0.0217 0.0383 0.0397

numSE3 0.0876 0.0232 0.0044 0.0018

numSE4 0.0279 0.0138 0.0030 0.0005

numSE5 0.0632 0.0167 0.0037 0.0007

375



M.J. Pachali et al.

A.5 Numerical properties of marginal-conditional MCMC algorithm (Section 5)

Table 16 Quantiles of rejection
rates of individual level
parameter updates among 1,000
simulated individuals

1% 25% 50% 75% 99%
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Fig. 8 Individual level coefficients β+ for 12 randomly chosen consumers
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Fig. 9 Upper level mean coefficient β̄∗: 1 β∗+, 2 β∗++, 3 β∗
uc1

, 4 β∗
uc2

Figures 8, 9, and 10 show MCMC trace-plots of draws retained for estimation for
selected parameters in the simulation study from Section 5.
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Fig. 10 Upper level variance coefficients V ∗
β
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A.6 Tablet PC preferences in an unconstrainedmodel

Table 17 Quantiles of marginal
posterior densities for the levels
of the cash back attribute in an
unconstrained model

βid
CB50

βid
CB100

βid
CB150

1% −2.238 −2.544 −3.317

25% −0.284 −0.118 −0.655

50% 0.501 0.840 0.371

75% 1.291 1.806 1.399

99% 3.251 4.240 4.060

Table 18 Fractionof sign violations for the 50-cash back attribute level, i.e. , implied
by the population distributions based on posterior means and the posterior of the hierarchical prior

Posterior Means Hierarchical Prior
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Fig. 11 Posterior predictive population densities of the levels of the cash back attribute using posterior
means and the posterior of the hierarchical prior in an unconstrained model

378



How to generalize from a hierarchical model?

References

Allenby, G.M., Arora, N., Ginter, J.L. (1995). Incorporating prior knowledge into the analysis of conjoint
studies. Journal of Marketing Research, 32(2), 152–162.

Allenby, G.M., Arora, N., Ginter, J.L. (1998). On the heterogeneity of demand. Journal of Marketing
Research, 35(3), 384–389.

Allenby, G.M., Brazell, J.D., Howell, J.R., Rossi, P.E. (2014). Economic valuation of product features.
Quantitative Marketing and Economics, 12(4), 421–456.

Allenby, G.M., & Ginter, J.L. (1995). Using extremes to design products and segment markets. Journal of
Marketing Research, 32, 392–403.

Allenby, G.M., & Lenk, P.J. (1994). Modeling household purchase behavior with logistic normal
regression. Journal of the American Statistical Association, 89(428), 1218–1231.

Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of the variance of k-fold cross-validation.
Journal of Mashine Learning Research, 5, 1089–1105.

Berry, S., Levinsohn, J., Pakes, A. (1995). Automobile prices in market equilibrium. Econometrica, 63(4),
841–890.

Bishop, C.M. (2006). Pattern recognition and machine learning. Berlin: Springer.
Boatwright, P., McCulloch, R., Rossi, P.E. (1999). Account-level modeling for trade promotion: An appli-

cation of a constrained parameter hierarchical model. Journal of the American Statistical Association,
94(448), 1063–1073.
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