Research Articles

Hierarchical Bayes Conjoint Choice Models —
Model Framework, Bayesian Inference, Model Selection,
and Interpretation of Estimation Results

By Nils Goeken*, Peter Kurz, and Winfried J. Steiner

The use of hierarchical Bayes (HB) multinomi-
al logit (MNL) models for measuring consumer
preferences is state-of-the-art in choice-based
conjoint (CBC) analysis. Here, academic re-
searchers and practitioners mostly utilize by
default the normal prior for the first level of the
hierarchical model. However, a mixture of nor-
mal distributions also appears promising, pro-
viding more flexibility to accommodate multi-
modal preference structures or skewed prefer-
ence distributions. There are currently two
prominent HB-CBC modelling approaches em-
bedding the mixture-of-normals approach: the
more widespread mixture-of-normals (MoN)-
HB-MNL model, and the Dirichlet process mix-
ture (DPM)-HB-MNL model. In this article, we
review the standard HB-MNL (with its normal
prior), the MoN-HB-MNL, and the DPM-HB-
MNL models, applying them to an empirical
multi-country CBC data set. We discuss relat-
ed Bayesian estimation processes, including
model selection issues; compare the statistical
performance of the three models in terms of fit
and prediction in an empirical study; and show
how estimation results can be interpreted.

4 4

1. Introduction

Companies and market research institutes often collect
and analyse consumer preference data in an attempt to
predict market demand for new or modified products, to
improve pricing decisions, and/or to segment markets.
Currently, the most widely used marketing tool to mea-
sure consumer preferences is choice-based conjoint
(CBC) analysis (Louviere and Woodworth 1983). Here,
preferences for attributes and attribute levels are collect-
ed through experimental choice decisions, which closely
resembles the choice behaviour of consumers in real
marketplaces. The popularity of CBC has grown even
more since the introduction of hierarchical Bayesian
(HB) estimation techniques (Allenby et al. 1995; Allen-
by and Ginter 1995; Lenk et al. 1996) that accommodate
individual consumer heterogeneity in choice data, and
which have become state-of-the-art in marketing theory
and practice (e.g. Aribarg et al. 2017; Baumgartner and
Steiner 2007; Hein et al. 2019, 2020; Voleti et al. 2017).
There is strong empirical evidence that addressing indi-
vidual preference heterogeneity in CBC studies using
HB modelling pays off in terms of statistical model per-
formance (e.g. providing a higher forecasting accuracy)
compared to focusing only on a finite number of discrete
support points assuming perfectly homogeneous seg-
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ments (e.g. Allenby et al. 1998; Andrews et al. 2002a;
Elshiewy et al. 2017; Moore 2004; Natter and Feurstein
2002; Voleti et al. 2017). For this reason, we will focus
on HB models for CBC data (also known as a continuous
modelling approach) in this paper [1]. While discrete
modelling approaches may be criticized for oversimpli-
fying the concept of heterogeneity, continuous modelling
approaches depend on additional assumptions about the
distribution of preference heterogeneity at the population
level. In particular, if a unimodal preference distribution
is assumed (as is the standard assumption, especially in
practical/commercial CBC applications), it can be ex-
pected that the continuous approach might not be flexible
enough to reproduce existing preference heterogeneity.
More advanced HB modelling approaches were (recent-
ly) introduced into the marketing literature, which impor-
tantly relax this supposed inflexibility of the standard HB
model. The aim of this contribution is to provide an over-
view of the established HB conjoint choice models (in-
cluding their model framework), Bayesian inference,
model selection issues, and interpretation of estimation
results. We further apply and compare the different HB
approaches in an empirical study for a multi-country
CBC data set.

The most widely used model with a continuous represen-
tation of heterogeneity for CBC data is the so-called HB-
multinomial logit (MNL) model, in the following re-
ferred to as “HB-MNL” (Allenby et al. 1995; Allenby
and Ginter 1995; Elshiewy et al. 2017; Lenk et al. 1996).
Here, using a normal distribution (and therefore a unimo-
dal distribution) has become the standard procedure in
the marketing literature to represent preference heteroge-
neity. However, it is just as likely (or there is no good
reason to rule out a priori) that a true distribution of con-
sumer preferences is multimodal. A first indication that
the HB-MNL might also adapt well to multimodal distri-
butions despite its unimodal normal prior heterogeneity
distribution was provided by Andrews et al. (2002a)
from a Monte Carlo study for logit models applied in a
scanner data context. The thin tails of the normal distri-
bution nevertheless suggest that the HB-MNL should not
be the “go-to” approach to approximate multimodal pref-
erence distributions, because individual preference pat-
terns lying at the tails of the normal distribution (i.e. that
do not fit well with the assumption of a unimodal distri-
bution) tend to be shrunk to the population mean. This
shrinkage, especially in multimodal data settings, could
mask important information (e.g. new or different struc-
tures in the data) (Rossi et al. 2005, p. 142). In addition,
heterogeneity distributions can be highly skewed (e.g.
for price coefficients). Hence, preference structures of
consumers may be too complex to approximate with one
unimodal distribution. The mixture-of-normals HB-
MNL model, in the following referred to as “MoN-HB-
MNL”, avoids this limited flexibility of the most simple
continuous approach of assuming a unimodal prior het-
erogeneity distribution (Lenk and DeSarbo 2000). Here,
the logit model is used to analyse individual preferences
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at the lower level of the hierarchical model, while a mix-
ture of several multivariate normal distributions is speci-
fied as prior heterogeneity distribution for consumers at
the population or upper level (Allenby et al. 1998). In do-
ing this, MoN-HB-MNL models can accommodate mul-
timodal, heavy-tailed, and skewed distributions by using
a sufficient number of normal components. The model in
turn is able to discover new or different structures in da-
ta. From a marketing perspective, the MoN-HB-MNL is
able to account for more than one segment or component
(as implicitly assumed in the simple HB-MNL by using a
single normal prior), and therefore allows for both inner-
segment and between-segment (preference) heterogene-
ity. Allenby et al. (1998) and Baumgartner and Steiner
(2007) for example found strong support for the applica-
tion of MoN-HB-MNL models. In their empirical stud-
ies, the MoN-HB-MNL model outperformed the HB-
MNL model in terms of goodness-of-fit and predictive
accuracy. However, comparable to latent class ap-
proaches, the number of components must be fixed prior
to model estimation in the MoN-HB-MNL approach, and
model selection procedures have to be applied to find the
“optimal” number of components.

Recently, the Dirichlet process mixture HB-MNL model,
referred to as “DPM-HB-MNL” in the following, has
been applied to CBC data to capture preference heteroge-
neity (Voleti et al. 2017). The DPM-HB-MNL model is
also able to approximate multimodal, heavy-tailed and/or
skewed preference distributions, and is even more flexi-
ble than the MoN-HB-MNL model. The part-worth utili-
ties are drawn from continuous distributions (here again,
a mixture of multivariate normal distributions), where
population means and covariances follow a Dirichlet
process. In other words, the continuous distributions are
centered around the discrete part-worth utilities of a Di-
richlet process (Voleti et al. 2017). A further advantage
of the DPM-HB-MNL model beyond its strong flexibili-
ty (Krueger et al. 2018) is that the number and composi-
tion of the components adjusts as a result a posteriori
(Rossi 2014, p. 72). The DPM-HB-MNL can be consid-
ered an extension of the MoN-HB-MNL, where the num-
ber of components becomes part of the Bayesian estima-
tion process. In an empirical study based on eleven CBC
data sets with different characteristics, Voleti et al.
(2017) reported a superior predictive validity (measured
by out-of-sample hit rates) over several other choice
models with discrete (e.g. latent class MNL models) or
continuous representations of consumer heterogeneity
(e.g. HB-MNL or MoN-HB-MNL models).

In this paper, we compare the performance of HB choice
models with the different prior distributions mentioned
above by means of a real-life, multi-country CBC data
set for tires. We specifically assess the performance of
the HB-MNL, the MoN-HB-MNL, and the DPM-HB-
MNL models in terms of goodness-of-fit and predictive
accuracy. To account for cross-country heterogeneity and
analyse the effects of including additional consumer
background characteristics, we estimate and compare the
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three types of models, with versus without these con-
comitant covariates. In Section 2, we first review the
three hierarchical choice models, discuss the related
Bayesian estimation processes, and propose measures to
assess the statistical performance. In Section 3, we apply
and compare the choice models in an empirical study
while also addressing model selection issues for the
MoN-HB-MNL (in the sense of determining the best so-
Iution). We then highlight the need to account for hetero-
geneity, show the effects of including individual consum-
er characteristics (concomitant covariates), and provide
an example of how to analyse differences in respondents’
preferences between countries.

2. Random utility models

All of the choice models presented in the introduction
belong to the class of random utility models (RUMs)
and are based on the assumption of utility-maximizing
consumers. In RUMs, a respondent is assumed to
choose the alternative with the highest utility (Silber-
horn et al. 2008; Train 2009, p. 14). For our purposes,
we will denote the utility that respondent n obtains

from alternative j in choice situation s as U, =V, +
&, V., represents the deterministic part of the utility,

whereas €, represents the stochastic part of the utility.
We specify the deterministic utility V,,; as linear in pa-
rameters: V= ;xnjs. Here, S, represents the vector
of part-worth utilities for respondent n, where the part-
worth utilities refer to attributes or attribute levels con-
sidered relevant for the choice of alternatives. x,; is a
vector for the attribute levels (either coded using dum-
mies or linearly) of alternative j offered to respondent n
in choice situation s. B, can vary according to the het-
erogeneity distribution (normal distribution vs. mixture
of normal distributions) underlying the respective mod-
elling approach. The estimation of all models is fully
Bayesian.

2.1. Hierarchical MNL and MoN-HB-MNL models

By assuming that the unknown part €, of the utility U,
follows a Gumbel distribution, we obtain the MNL mod-
el with closed-form expressions for choice probabilities

(Train 2009, p. 34):

MINL e'
P = SIS (1)
Using a finite mixture of normals, we are able to ap-
proximate multimodal heterogeneity structures as well
as skewed distributions and distributions with thick
tails. The general form of a finite mixture of normals
consists of a mixing distribution p,, and the multivari-
ate normal density ¢(S|b,,W,). The mixing distribu-
tion p,, puts mass on M different values of b,, and W, ,m
ell,..,M}:

f(lB|p’{bm’Wm}):§pm ¢(ﬁ|bm’Wn1) (2)

Using a sufficient number of components, this approach
can approximate any multivariate density (Train 2009,
pp. 141-143).

We specify the following hierarchical model for Bayes-
ian inference (Rossi 2014, p. 156; Rossi et al. 2005,
pp. 144-145):

B, =A% +g,

g, ~ (Db, W,),

L, ~ MN,(p),

vec(A) ~ (8, Ay), 3)
p ~ Dirichlet( &),

b, ~ (b,w'W,),

W, ~ IW(k,Z).

The n_z-variables represent observable individual back-
ground characteristics of each of the n = 1,...,N respon-
dents (also referred to as concomitant variables) and shift
the mean of the normal mixture on the basis of these ob-
servations. Here, A € (n_,d) with d as the dimension of
the data (number of part-worth utilities) describes how
the means of the part-worth utilities vary as a function of
the z-variables. A is normally distributed with mean vec-
tor & and covariance matrix Ay . The indicator variable /,
€ {1,....M} represents the outcome of a multinomial dis-
tribution and indicates from which component the part-
worth utilities of respondent n are drawn. p € R" are the
associated probabilities following a Dirichlet distribu-
tion. & € R™ can be interpreted as a tightness parameter,
which has an influence on the masses of the components.
Rossi (2014, pp. 72-76) shows that a large « leads to a
substantially larger number of components the Dirichlet
distribution places mass on. The corresponding popula-
tion means b,, and the covariance matrices W,, with m €
{1,..,M} are normally distributed (with mean vector b
and covariance matrix w™'W,), and inverse Wishart dis-
tributed (with k degrees of freedom and scale matrix X).
The dimensions of b, and W, depend on the number of
parameters (part-worth utilities) to be estimated. Follow-
ing Allenby et al. (1998) the MoN-HB-MNL model as
well as the simple HB-MNL model can be considered
special cases of a finite mixture of normals framework.
For M =1 we obtain the HB-MNL, for M > 1 the MoN-
HB-MNL.

2.2. DPM-HB-MNL model

A more recent approach which also accounts for continu-
ous consumer heterogeneity is the DPM-HB-MNL mod-
el. As mentioned in the introduction, the DPM-HB-MNL
can be considered an extension of the MoN-HB-MNL
approach where the number of components become part
of the Bayesian estimation framework. This Bayesian es-
timation framework allows for a countably infinite num-
ber of components by placing additional priors on the
component parameters. Rossi (2014, p. 59) for example
comments on a more flexible approximation of multi-
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modal distributions when a larger number of multivariate
components are considered. To obtain the DPM-HB-
MNL model, the Dirichlet prior in the MoN approach is
replaced by a Dirichlet process:

gn ~ qz(bl B W[”)’

, 4)
(b, W,) ~ DP(Glppp, Gy).

In this setting, the normal distribution (as seen above) ac-
counts for within-segment consumer heterogeneity. By
placing mass on different components, the Dirichlet pro-
cess considers across-segment heterogeneity on the one
hand, while accounting through a variety of b, and W,
for thick tails and skewed distributions on the other. aDP,:
€ R is referred to as the concentration parameter or Di-
richlet process tightness parameter, and affects both the
amount of across-segment consumer heterogeneity, and
the approximation of heavy-tailed or skewed distribu-
tions by influencing the number of components. G, can
be interpreted as a base measure (described below). By
increasing «,,,, we can place a higher prior probability
on models with a large number of components (Rossi
2014, pp. 72-76). We chose a flexible prior for the con-
centration parameter based on Conley et al. (2008):

P
P(Oppp) o= [1 - %L_g) - (5

a-a

The advantage of this prior (as compared to e.g. gamma
priors) is that implications for the distribution of the
number of possible components are more intuitive to as-
sess (for more details see e.g. Rossi 2014, pp. 72-76).
Hence, & € R and @ € R were chosen to reflect the
range of the probable number of components. p is a
power parameter, which spreads out the prior mass. Es-
cobar and West (1995) for example used a prior gamma
distribution for ¢,,,,, while Ohlssen et al. (2007) and Vo-
leti et al. (2017) applied a uniform distribution. Impor-
tantly, Voleti et al. (2017) examined the effect of differ-
ent functional forms for the prior on ¢, finding that
the corresponding 95 % credible intervals differed only
marginally. Following Conley et al. (2008), the base dis-
tribution G, is parametrized as follows:

b ~(0,a'W), (6)
W ~1IW(v, vul).

Within the Dirichlet process, the base distribution G, can
be seen as a mean distribution, whereas «,,,,, is a kind of
variance of (b,,W,). Sethuraman (1994) provides a
specification of the Dirichlet process prior in terms of the
so-called stick-breaking representation. Here, the draws
from the Dirichlet process can be represented as an infi-
nite mixture of discrete vectors with specific probabili-
ties following a beta distribution depending on «,pp.
The priors on a, v and u are: a ~ U(q,,a"), u ~ U(u,u"),
v~d-1+exp({), { ~ U(v,v"), where d is the dimen-
sion of the data (number of mean part-worth utilities),
and U is the uniform distribution.
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2.3. Model estimation

We applied Markov Chain Monte Carlo (MCMC) meth-
ods to take draws from the posterior distributions of the
HB-MNL, the MoN-HB-MNL, and the DPM-HB-MNL
models. The draws for the individual part-worth utilities
were generated by an improved Metropolis-Hastings ran-
dom walk method with increments, whose covariance
matrix can be tuned via a scaling parameter to approxi-
mate the conditional posterior best possible (following
Rossi 2014, pp. 159-161 and Rossi et al. 2005, pp. 133—
136). This covariance matrix among other things de-
pends on the so-called fraction likelihood of respondent
n which is used to compute the Hessian, and results from
a multiplicative function of the MNL unit likelihood and
the pooled likelihood. In this approach (referred to as
method (iii) in Rossi et al. 2005, p. 137), a fractional
likelihood parameter determines the weights of both like-
lihoods (Rossi 2014, p. 160). The fractional likelihood
approach produces a higher degree of consumer hetero-
geneity (compared to standard HB models as seen e.g. in
Train and Sonnier 2005) [2], and is implemented by de-
fault in the R code of the bayesm package, which we
used for estimation of all HB models considered here.
For more details, compare Rossi et al. (2005) and Rossi
(2014).

Based on Rossi (2014, pp. 16-25), we chose the follow-
ing diffuse prior configuration for our application: k =
d+3,w=.01,6=0,=5,.5",2=kl,§=0,A;=
.011, where d is the dimension of the data (here, the num-
ber of mean part-worth utilities), and I is the identity ma-
trix. For further analysis, we set the fractional likelihood
parameter to 1 (i.e. only the pooled likelihood was used
to compute the Hessian) [2]. We tested different settings
regarding the fractional likelihood parameter, finding
that it only had a marginal impact on our measures of
performance when using the diffuse prior settings of
Rossi (2014, pp. 16-25). Following Rossi (2014, p. 29)
again, we started with a large number of components
(here: M =9) for estimation of the MoN-HB-MNL mod-
el, and allowed the sampler to shut down a number of the
components in the posterior, which corresponds to an im-
plicit model selection step (compare the empirical study
in Section 3). As a result, only those components were
added to the posterior that provide additional flexibility
to approximate the density shape. Alternatively, estima-
tion of the MoN-HB-MNL could be carried out for a
fixed number of M € {1,...,C} components, followed by
an explicit model selection procedure. For example,
model selection can then be based on the 95 %-trimmed
log marginal likelihood suggested by Dubé et al. (2014)
[3]. The marginal likelihood penalizes models that have a
higher complexity (i.e. a larger number of estimated pa-
rameters) more strongly (Rossi 2014, p. 168), and is a
well-established measure for (“explicit”’) model selection
to favour more parsimonious models. Note that the
MoN-HB-MNL includes the HB-MNL as a special case
when setting the number of components to M = 1.
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The DPM-HB-MNL prior parameter settings were cho-
sen following Conley et al. (2008) and Rossi (2014,
pp- 81-89). We set p = .8 and the other prior parameters
toag,=.01l,a"=10,u,=.1,u" =4, v,= .01, and v" = 3.
« and @ were chosen to provide a broad prior support for
values from 1 to 50 components. Since the choice of a
prior on ¢, is of particular interest (as the expected
number of components depends on «,, (Antoniak
1974)), we conducted a sensitivity analysis for these pri-
or settings of the DPM-HB-MNL model. The results
(part-worth utilities, goodness-of-fit measures, and the
number of components) differed only marginally for dif-
ferent choices of & and @, which is in line with the find-
ings reported in Voleti et al. (2017).

The MCMC sampler was run for 210,000 iterations with
a burn-in period of 110,000 iterations. To reduce possible
correlation of the draws and prevent internal storage
problems, we only used every 100th draw of the remain-
ing 100,000 draws. We then used each of the 1,000 saved
draws of the posterior distributions after the burn-in peri-
od to account for uncertainty in individual part-worth
utilities. More precisely, each performance measure (see
Subsection 2.4) was computed based on the draw level.
We subsequently computed 95 % credible intervals of
the resulting distributions. In a recent publication, Hein
et al. (2022) could show for both simulated and empirical
data that using the individual draws from an estimated
HB model considerably improves the accuracy of shares
of choice predictions in market simulations compared to
using point estimates or other options. In addition, when
applying a Bayesian approach for parameter estimation,
it is theoretically correct to compute related quantities
(such as choice shares or other performance measures) in
a fully Bayesian manner, i.e. based on individual draws
rather than on point estimates obtained from previously
averaging individual draws (Hein et al. 2022). To ensure
the convergence of the Markov chains, we monitored
time-series plots and checked whether goodness-of-fit
measures oscillated only randomly around their final val-
ues. Each check demonstrated that all MCMC chains
reached stable states.

2.4. Measures of performance

Estimation of the HB-MNL, MoN-HB-MNL, and DPM-
HB-MNL models based on CBC data provides us with
individual part-worth utilities. We assessed the statistical
performance of the three different types of models based
on several performance measures, using the percent cer-
tainty (PC), the root likelihood (RLH), and the in-sample
hit rate (IHR) as goodness-of-fit measures, as well as the
out-of-sample hit rate (OHR) to evaluate the predictive
model performance. Because no holdouts were collected
for our data at hand, we performed leave-one-out cross-
validation. A more detailed description is provided be-
low.

The percent certainty, also known as likelihood-ratio in-
dex, pseudo R?, or McFadden’s R? compares the (final)

log likelihood of a model to the likelihood of the null

model, i.e. a model where all covariate effects are as-

sumed to be zero (B = (0,...,0)") (Hauser 1978; McFad-

den 1977; Ogawa 1987):

LL. —LL
“final ‘null

—final 7 Tnull 7
N7 (7)

‘null

where LLy, , and LL,,, denote the (final) log-likelihood
of the considered model based on draw r and the null
log-likelihood, respectively. Values between even .2 and

4 indicate a satisfactory fit (McFadden 1977).

PC(p") =

The log-likelihood is calculated by:

LL =In(L(8") = X X X Y, In(Py), (8)

. J
=1 s=1 j=1

=
@

where S, describes the choice sets offered to respondent
n. Y, is a dummy variable indicating whether respon-
dent n has selected alternative j from choice set s (= 1) or
not (= 0), and P}, is the choice probability of respondent
n for alternative j in choice set s based on the r-th draw.

The root likelihood represents the geometric mean of hit
probabilities (e.g. Jervis et al. 2012; Sawtooth Software
2017):

RLH(B") =" (9)
As a rule, the value range of the RLH is between the re-
ciprocal of the number of alternatives in a choice set
(here: 1/J) and 1. The lower bound is reached for equal
choice probabilities of all alternatives, which is synony-
mous with equal deterministic utilities for all alterna-
tives, and hence corresponds to the situation in the null
model (if all effects are zero, the utilities of all alterna-
tives are the same). In other words, the RLH of the null
model serves as a benchmark against which the RLH of
the estimated model should be assessed.

The in-sample hit rate reflects the share of first-choice
hits in the estimation sample (e.g. Andrews et al. 2002b;
Voleti et al. 2017). A hit occurs if a respondent has actu-
ally chosen the alternative with the highest deterministic
utility from a choice set as computed from the estimated
model. This requires a respondent to have truly chosen
the alternative with the highest utility from the choice
set, which is consistent with random utility theory and all
models considered here. Again, the chance hit rate (here:
1/7) serves as benchmark for assessing the model fit.

We further used the out-of-sample hit rate to evaluate the
predictive performance of the models. Since no addition-
al holdout choice tasks were collected for the data at
hand (as mentioned above), we randomly selected one of
the choice tasks evaluated by each respondent as a hold-
out to generate a validation sample. This means we esti-
mated each model for S, — 1 choice tasks per respondent,
leaving out each one randomly determined choice task,
and applied the estimated model to predict the choices of
respondents for the holdouts. Again, the reciprocal value
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of the number of alternatives in the holdout choice task
serves as a benchmark for the realized out-of-sample hit
rate.

3. Case study

The following applies the different types of models (HB-
MNL, MoN-HB-MNL, DPM-HB-MNL) to an empirical
CBC data set. First, we describe the relevant attributes
and attribute levels used in our empirical study. We then
report and compare the statistical performance of the
three models with regard to goodness-of-fit and predic-
tive accuracy, and show how the estimated heteroge-
neous preference structures can be interpreted. We also
focus on cross-country heterogeneity, specifically ana-
lysing the benefit of including observable respondent
characteristics (country dummies) as concomitant vari-
ables in the models.

3.1. Data

The data for our empirical study was provided by Kantar
(TNS), one of the largest market research institutes in
Germany and worldwide. The data was drawn from the
product category summer tires and comprised 4,026 re-
spondents. It was collected in 2016 in France (n = 820),
Germany (n = 802), Spain (n = 800), Italy (n = 804), and
the United Kingdom (n = 800). The focal product of
summer tires was described by 17 relevant attributes,
among them a brand attribute representing 10 different
competitors. A special feature of the data was that brand-
specific price attributes were used, i.e. each brand was
characterized by an own unique set of price levels. The
use of alternative-specific price levels allowed different
price quality tiers of summer tires to be adequately in-
cluded. Accordingly, 10 out of the 17 attributes were
price attributes, and an alternative-specific design was
used to build the choice tasks for the respondents. The at-
tributes and attribute levels used in the study are shown
in Tab. 1.

The latter levels of the two attributes rolling resistance/
fuel consumption and grip on wet roads refer to the EU
tire labels required by the European Union, and indicate
the performance (efficiency) of a tire regarding them [4].
The star levels of the two attributes consumer reviews
and independent test results correspond to the estab-
lished 5-star rating system widely used for product or
service evaluations. Here, not available was included as
additional level to simulate the situation in real world
settings where a rating may not always be available.

Each respondent cycled through 15 choice sets and was
asked each time to choose the most preferred summer
tire, resulting in a total of 60,390 observations. The
choice sets consisted of three alternatives plus a “no pur-
chase” option. The first three positions in the choice sets
representing the “real” alternatives received almost the
same choice shares (26.54 % for position 1, 26.24 % for
position 2, and 26.09 % for position 3), suggesting a very
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well-balanced, randomly generated choice task design.
The “none” alternative obtained a choice share of
21.13 %, which is a slightly higher share compared to
what is commonly observed in empirical CBC studies
with many attributes and attribute levels. According to
Johnson and Orme (1996), typical shares for the “none”
option lie between 5 % and 15 %.

We estimated the HB-MNL model, the MoN-HB-MNL
model (with nine components), and the DPM-HB-MNL
model based on the 60,390 observations. Because the da-
ta did not contain fixed holdout tasks, we randomly split
the choice sets into an estimation sample (14 choice sets
per respondent; 56,364 observations) and a validation
sample (1 choice set per respondent; 4,026 observations).
Since respondents may need some time for orientation or
adaption in the initial phase of the choice task and/or
may fatigue in later choice tasks, the holdout was select-
ed at random for each respondent out of the middle 50 %
of the 15 choice sets, i.e. out of choice sets 5 to 11. We
repeated this validation procedure a second time to re-
duce variability and to compensate for unwanted system-
atic effects that could have been caused by a one-time
random split. In this context, we could have further per-
formed leave-one (choice set)-out cross validation to
minimize potential selection biases, which would have
required conducting 15 rounds of cross-validation using
each of the 15 choice sets per respondent once for valida-
tion. However, we limited ourselves to two rounds of
cross-validation due to the high number of observations
and the resulting long computation times. We averaged
the out-of-sample hit rates (based on draw-level) over the
two rounds of cross-validation to assess the predictive
performance of the models. We used dummy-coding (ex-
cept for the price attributes) for model estimation by
specifying all first attribute levels as reference categories
(i.e. “Michelin”, “Basic”, “-8,000 km”, “A”, “A”, “not
available”, “not available”). The brand-specific price at-
tributes were coded linearly to stay parsimonious (to
save degrees of freedom), leading to the estimation of a
total of 44 part-worth utilities/parameters on an individu-
al respondent level (including the “no purchase” parame-
ter).

3.2. Results

We evaluated the predictive accuracy of the models by
averaging the results of both validation samples, as men-
tioned above. All goodness-of-fit measures were com-
puted based on the estimation results for the entire data
set. As outlined in Section 2.3, we estimated the MoN-
HB-MNL model with M = 9 components, allowing the
MCMC sampler to shut down a number of the compo-
nents rather than starting with a small number of compo-
nents and applying an “explicit” model selection proce-
dure. All results for the different performance measures
(including 95 % credible intervals of the posterior distri-
butions) obtained for the three models either with or
without concomitant variables (referred to as z-variables)
are summarized in Tab. 2.



Tab. 1: Attribute and attribute
levels used in the empirical
study
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Attribute Attribute levels # of attribute levels
e  Michelin
e  Continental
¢ Goodyear
e  Bridgestone
Brand e Pirelli 10
e  Kleber
e  (lient Brand
e  Firestone (Germany: Uniroyal)
e  Hankook
e  Low price brand
. e  Basic
Tire Type e  Comfort 3
e  Sports
e -8000km
. e 4,000 km
Longevity . Basic 5
e 44,000 km
e  +8,000 km
. A
Rolling resistance/ ® B 5
Fuel consumption * C
. E
. F
e A
. B
Grip on wet roads e C 5
. E
. F
e  not available
. 1 star
Consumer reviews ® 2 stars 6
e 3 stars
e 4 stars
. 5 stars
e  not available
D) 1 star
Independent test e 2 stars 6
results . 3 stars
e 4 stars
. 5 stars
Price Michelin o 77€81€85€,89€93€,97€ 101€ '
Price Continental — ,  9¢ 73¢ 77€ 81€,85€,89€,93€ 7
Price Goodyear o 65€,69€ 73€ 77€ 81€, 85€,89€ 7
Price Bridgestone  ,  ¢5¢ 69¢€ 73€,77€,81€,85€,89€ 7
Price Pirelli o 65€,69€ 73€ 77€ 81€, 85€,89€ 7
Price Kleber o 57€,61€65€69€ 73€,77€,81€ 7
Price Client Brand  , ¢ ¢ 65¢ 69€,73€,77€,81€,85€ 7
Price Firestone o 53€,57€61€65€69€, 73€,77€ 7
Price Hankook o 53€,57€61€65€ 69€, 73€ 7T7€ 7
Price low-price 7

brand

49€,53€,57€,61€,65€,69€,73€
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Model # of mixture LL PC RLH IHR OHR
components
HB-MNL M=1 [-28289.26;-27330.77] [.662;.674] [.626;.636] [.809;.816] [.515;.532]
MoN-HB-MNL M=9° [-28351.41;-27335.51] [.661;.673] [.625;.636] [.808;.816] [.515;.533]
DPM-HB-MNL M=17° [-38537.94;-37550.30] [.540;.551] [.528;.537] [.736;.744] [.533;.551]
HB-MNL (z-var) M=1 [-27831.58;-26857.83] [.668;.679] [.631;.641] [.811;.819] [.516;.533]
MoN-HB-MNL (z-var) | M=9* [-27839.80;-26949.26] [.667;.678] [.631;.640] [.811;.819] [.515;.534]
DPM-HB-MNL (z-var) | [M=1]° [-37970.41;-37095.06] [.546;.557] [.533;.541] [.740;.747] [.535;.551]

Notes: a: MoN-HB-MNL model estimated initially with nine components, allowing the components to be shut down in the posterior, and

resulting in a one-component solution.

b: The number of components were obtained as a result a posteriori. The DPM-HB-MNL model returned one component for our data set (as

indicated by [M = 1]) as well.

Tab. 2: Goodness-of-fit and predictive accuracy statistics by model type. Shown are the 95 % credible intervals of the posterior distributions.

We first discuss the results for the models that did not in-
clude the additional z-variables (i.e. that did not account
for observed respondent heterogeneity). When analysing
the posterior draws of the mixture probabilities of the
MoN-HB-MNL model, we could observe that the mix-
ture model with initially nine components degenerated
into a one-component solution (i.e. to a model with a sin-
gle normal component, as provided by HB-MNL by defi-
nition). Since credible intervals for all goodness-of-fit
and predictive accuracy statistics overlap between the es-
timated MoN-HB-MNL solution and the HB-MNL solu-
tion, both model types provide comparable results for the
data at hand; the additional flexibility of the MoN-HB-
MNL does not pay off here.

The DPM-HB-MNL model results in a one-component
solution as well. Because of the different (more flexible)
prior settings of the DPM-HB-MNL model, goodness-
of-fit and predictive accuracy results turn out different
nevertheless: goodness-of-fit statistics (LL, PC, RLH,
and THR) are much worse than for the HB-MNL and
MoN-HB-MNL solutions, while predictive validity mea-
sured in terms of OHR is superior (even if the upper
bound value of the credible interval obtained for the
MoN-HB-MNL model (.533) coincides with the lower
bound value of the credible interval for the DPM-HB-
MNL model (.533)). The differences in fit and predictive
accuracy between models can be explained by a larger
shrinkage effect of the DPM-HB-MNL model, as exem-
plarily displayed for the brand intercepts in Fig. I (ex-
cept for Michelin, which constitutes the reference cate-
gory). The figure presents posterior means of the margin-
al densities for the brand intercepts, contrasting the HB-
MNL model (solid line), the MoN-HB-MNL model (dot-
ted line), and the DPM-HB-MNL model (bold solid
line). While the differences in fitted densities between
the HB-MNL model and the MoN-HB-MNL model are
rather small, the distributions obtained for the DPM-HB-
MNL are clearly steeper and more centered around the
population mean. There, individual part-worth utilities
are shrunk more strongly towards the population means
compared to the other two models [5]. On the other hand,
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we found high Pearson correlations between estimated
individual part-worth utilities of the HB-MNL and MoN-
HB-MNL models (.97), HB-MNL and DPM-HB-MNL
models (.97), and MoN-HB-MNL and DPM-HB-MNL
models (.95), indicating that differences between the
choice models do not appear substantial [6] (compare
Tab. 3, left upper section).

We augmented the three models to consider the potential
impact of the country of origin of the respondents on
preference structures and model performance. We specif-
ically included country dummies for the respondents in
the upper level of the models as additional predictors
(z-variables) for part-worth estimation to capture ob-
served cross-country heterogeneity (compare equation 3).

All performance measures displayed in Tab. 2 suggest
only very little benefit from this extension. Goodness-of-
fit and predictive accuracy measures between choice
models with and without country dummies are compara-
ble, as indicated by the overlapping credible intervals.
Note that credible intervals for the predictive model per-
formance measured by OHR not only overlap, but are al-
most identical. On the other hand, a closer look at the
A matrix of the extended HB-MNL model (i.e. including
z-variables, compare equation 3) shows that in 70 of the
176 cases (remember that Ais a (n_,d)-matrix, with n_
and d denoting the number of country dummies (= 4) and
the number of part-worth utilities (= 44)), the corre-
sponding 95 % credible intervals do not include the 0, in-
dicating a relationship between country of origin and the
respondents’ (mean) part-worth utilities. The same ap-
plies to the extended MoN-HB-MNL and DPM-HB-
MNL models for 69 or 72 of the 176 cases. Nevertheless,
the general impression is one of a weak relationship be-
tween the country of origin and attribute preferences,
which is not only visible from the performance measures
(Tab. 2) but also from the Pearson correlations for indi-
vidual part-worth utilities between models with versus
without country dummies, which are consistently above
.94 (Tab. 3). Similar to Fig. 1, we also compared the pos-
terior means of the marginal densities between the mod-
els with and without z-variables. The distributions here
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Fig. 1: Posterior means of marginal densities for brand intercepts

HB-MNL MoN-HB- DPM-HB- HB-MNL MoN-HB- DPM-HB-

MNL MNL (z-var) MNL (z-var) MNL (z-var)

HB-MNL 1 97 97 .99 97 .96
MoN-HB MNL 1 .95 .96 94 94
DPM-HB-MNL 1 .96 94 98
HB-MNL (z-var) 1 97 97
MoN-HB-MNL (z-var) 1 95

DPM-HB-MNL (z-var)

1

Tab. 3: Pearson correlations between individual part-worth utilities

are nearly identical and are available from the authors
upon request.

Overall, including country of origin covariates for re-
spondents does not improve the predictive model perfor-
mance, nor does it make a difference in terms of pair-
wise correlations between individual part-worth utilities
or posterior means of marginal densities, as discussed
above. The fact that both the MoN-HB-MNL model and
the DPM-HB-MNL model (as the HB-MNL model by
definition) also only suggest a 1-component solution fur-
ther underscores how cross-country heterogeneity does
not play an important role for the data at hand.

Which of the three models should be selected based on
the results so far? Following van Heerde et al. (2002),
marketing managers should rely on the model with the
best predictive performance, which here is the DPM-HB-
MNL model (both with and without z-variables). On the
other hand, differences in OHR between the DPM-HB-
MNL and the two other types of models (HB-MNL,
MoN-HB-MNL) are not that large (only about 2 %) for

our data. Furthermore, the HB-MNL model is the most
parsimonious model and is currently the only model that
is implemented in commercial software packages (e.g.
Sawtooth Software), the latter of which facilitates its ap-
plication for practitioners. Finally, extending our models
by concomitant variables (here the country of origin
dummies) to account for observed heterogeneity between
respondents did not pay off, at least not from a statistical
perspective (compare Tab. 2) [7]. Nevertheless, using the
country of origin information for the respondents in a
post-hoc segmentation allowed us to identify a few dif-
ferences in brand preferences between respondents from
different countries (see the discussion in Subsection 3.3
below). For the reasons mentioned, we will continue
comparing and interpreting the part-worth utility struc-
tures obtained for the HB-MNL model (most parsimoni-
ous model) and the DPM-HB-MNL model (best predic-
tive performance) in the next section, and abstain from
inspecting more closely the results for the MoN-HB-
MNL model as well as for the models with concomitant
variables. In the online appendix, we summarize and
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briefly discuss goodness-of-fit and predictive validity
statistics for the three choice models (HB-MNL, MoN-
HB-MNL and DPM-HB-MNL models without z-vari-
ables) when estimated with part-worth utility functions
as well for the brand-specific price attributes (leading to
the estimation of a total of 94 part-worth parameters on
an individual respondent level compared to 44 part-
worth parameters in case the price attributes were coded
linearly, see Section 3.1).

3.3. Interpretation of heterogeneous preference
structures

As discussed, the DPM-HB-MNL model provided a
higher cross-validated hit rate compared to the HB-MNL
model, while the latter showed better goodness-of-fit sta-
tistics caused by a weaker shrinkage effect. Tab. 4 dis-
plays estimated posterior means and standard deviations
for both models on the individual attribute level. First,
we observe a very similar part-worth utility structure es-
timated by the two models. An average consumer (if one
actually existed) would prefer a Goodyear or Bridges-
tone tire in its basic version, with the highest longevity
(+8,000 km), optimal rolling resistance/fuel consump-
tion (EU tire label “A”), optimal grip on wet roads (EU
tire label “A”), and with the best ratings in consumer re-
views and independent tests (“‘5 stars”). We further ob-
serve that posterior means of price effects are negative
for all brands except for the low-price brand, which was
the cheapest brand in the tire market at the time the data
was collected. For the low-price brand, the posterior
mean price effect approaches zero in both models (.01 in
the HB-MNL and .00 in the DPM-HB-MNL). As expect-
ed, a (nearly) monotonic increase (the more the better) or
decrease (the less the better) of mean part-worth utilities
for attribute levels is obtained for: longevity, rolling re-
sistance/fuel consumption, grip on wet roads, consumer
reviews, and independent test results. Here, the best attri-
bute levels are the most preferred ones across respon-
dents (as indicated by the population mean part-worths in
Tab. 4). Not unexpectedly, very bad consumer reviews or
test results (““1 star”) are evaluated as being even worse
than if no consumer reviews or test results were available
at all.

Fig. 1 showed a stronger shrinkage effect of the DPM-
HB-MNL model compared to the HB-MNL model for all
estimated brand intercepts. In 7Tab. 4, this stronger
shrinkage of the DPM-HB-MNL model towards the pop-
ulation means is reflected by consistently smaller stan-
dard deviations across all attributes and levels. This ex-
plains the conflicting results of a better predictive perfor-
mance, but a worse fit of the DPM-HB-MNL model
compared to the HB-MNL model, suggesting overfitting
of the HB-MNL model. In the following, we focus on in-
terpreting the heterogeneous preference structures of the
DPM-HB-MNL model in greater detail.

Based on the arrangement of attributes and attribute lev-
els in Tab. 4, Fig. 2 illustrates the estimated distributions
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of individual-level part-worths obtained for the DPM-
HB-MNL model (not included are the reference levels
for the categorical attributes) by depicting the spans of
individual part-worth estimates for each of the attributes
and levels. This figure shows a large amount of heteroge-
neity in utility structures across respondents, as well as
large differences in the amounts of heterogeneity across
attributes and their levels. The largest ranges of individu-
al part-worth utilities (apart from the “no purchase” pa-
rameter) can be observed for the brand attribute repre-
senting the different competitors. It is noticeable that the
brands out of the “top 5 strongest brands” list (Bridges-
tone, Pirelli, Continental, Goodyear) (Brand Finance
2020, p. 21) show clearly smaller amounts of heteroge-
neity (maximum part-worth: 4.37, minimum part-worth:
-5.01) compared to the other brands (Kleber, Client
Brand, Firestone, Hankook, and the low-price brand)
with part-worths in the range between -8.93 and 7.80.
For the attributes rolling resistance/fuel consumption and
grip on wet roads, we obtained a larger amount of het-
erogeneity across respondents for the worst levels (EU
tire labels “E” and “F”). In contrast, respondents’ prefer-
ences differ more strongly for better levels of the attribu-
tes longevity (+8,000 km), consumer reviews (5 stars),
and independent test results (5 stars).

Fig. 3 displays different utility structures of three select-
ed respondents (respondents 1303, 1532, and 3494) for
two of the tire attributes together, with the preference
structure for an average consumer resulting from the
DPM-HB-MNL model. The latter is represented by the
mean of the individual part-worth utilities of respondents
and therefore ignores preference heterogeneity. The
brand preference structures of respondents 1532 and
3494 are completely different. Whereas respondent 3494
clearly favoured the lower-priced non-premium brands
(Kleber, client brand, Firestone, Hankook, and the low
price brand), respondent 1532 apparently tended towards
the higher-quality premium brands (“top 5 strongest
brands”), with by far the highest utility attributed to Mi-
chelin. Both respondents also largely differ in their brand
preferences from the (fictitious) average consumer, who
appears to be relatively indifferent to the various brands
(except for the low-price brand which is somewhat less
preferred). This is clearly the result of averaging out the
highly heterogeneous individual brand preference pat-
terns. In contrast, respondent 1303 showed a much less
clearer preference pattern with regard to brand utilities,
even if she/he also happened to prefer the brands Kleber,
Hankook, and the low-price brand least, similar to re-
spondent 1532. On the other hand, respondent 1303
placed more weight on the technical feature of grip on
wet roads, clearly rejecting the two worst tire labels E
and F, while the utility patterns of the other two respon-
dents (1532, 3494) were close to that of the average con-
sumer. Nevertheless, all respondents preferred tires with
a higher performance regarding the technical attribute,
where utility consistently decreased with a less efficient
tire label. Overall, the three respondents considerably
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HB-MNL DPM-HB-MNL
Attribute Attribute levels Posterior mean Std Dev Posterior mean Std Dev
Michelin .00 .00 .00 .00
Continental -13 1.97 -.07 1.25
Goodyear .35 2.11 24 1.37
Bridgestone .35 2.29 24 1.52
Brand Pirelli 24 1.77 15 1.13
Kleber =23 3.30 -.16 2.23
Client Brand -41 2.76 -.28 1.88
Firestone .30 3.17 .20 2.14
Hankook 18 3.40 11 2.31
Low price brand -.87 4.19 -.61 2.86
Basic .00 .00 .00 .00
Tire Type Comfort -.06 43 -.04 .19
Sports =27 45 -.18 .20
-8,000 km .00 .00 .00 .00
-4,000 km -.09 .70 -.03 35
Longevity Basic 1.17 1.22 .84 79
+4,000 km 1.30 1.48 93 .94
+8,000 km 1.99 1.73 1.41 1.16
A .00 .00 .00 .00
B =31 .39 =21 18
Rolling resistance /
Fuel ctg)nsumption C -84 78 -9 >0
E -1.84 1.76 -1.30 1.21
F -2.28 2.11 -1.60 1.46
A .00 .00 .00 .00
B -.28 41 -.19 21
Grip on wet roads C =76 .85 -.53 55
E -1.80 1.92 -1.25 1.32
F -2.40 2.30 -1.69 1.61
not available .00 .00 .00 .00
1 star =37 .56 =27 .34
Consumer reviews 2 stars -.04 43 -.03 22
3 stars 52 47 .36 25
4 stars .86 1 .61 42
S stars 1.12 95 .79 .58
not available .00 .00 .00 .00
1 star -.62 .55 -42 32
Independent test 2 stars -.02 .39 .00 .16
results 3 stars .64 .60 48 35
4 stars 1.04 .88 74 .55
5 stars 1.52 1.25 1.07 .82
Price Michelin =71 .60 -47 35
Price Continental -.53 .69 -.36 42
Price Goodyear -45 .98 -32 .65
Price Bridgestone -.62 94 -43 .61
Price Pirelli -.61 .81 -.44 52
Price Kleber =33 .82 =23 Sl
Price Client Brand -47 .86 =33 .55
Price Firestone -.13 .88 -.09 .59
Price Hankook -.18 .86 -.11 .59
Price Low-price brand .01 75 .00 .49
No purchase -1.67 4.50 -1.58 3.39

Tab. 4: Distributions of individual-level part-worths. Posterior means and standard deviations (HB-MNL vs. DPM-HB-MNL model)
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Part-worths heterogeneity
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Notes: The length of a bar corre-
sponds to the range of the esti-
mated part-worths for a respec-
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Preference structure

tive attribute level and reflects
the amount of heterogeneity
across respondents. The estimat-
ed population mean part-worths
are highlighted with a dot.

Fig. 2: Distributions of individu-
al-level part-worths (DPM-HB-
MNL)

= g g = 5 3 g g E
3] = 4 S ] < < S S <
<= S 2 7 = 2 B % = 5
S = 3 o A M ) S E

= = S = = D T 3
s} ] = 9 ‘g

&) m &} ;-

=}

s}

\ J

Y
Brand

©— Respondent 1303 —@— Respondent 1532 L

differed in their preferences, especially in their part-
worth utility patterns for the different brands (high pref-
erence for lower-priced non-premium versus higher-
priced premium brands). Therefore, ignoring existing
preference heterogeneity (i.e. assuming an average con-
sumer) might obscure important aspects, and would most
likely lead to biased predictions and/or wrong manageri-
al implications.

In Section 3.2, we concluded that the inclusion of addi-

tional covariates (referred to as concomitant or z-vari-
ables) accommodating a possible country of origin effect
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Respondent 3494 ----@--- Average Consumer

I

Grip on wet roads Fig. 3: Preference structure for

the attributes brand and grip on
wet roads of three selected
respondents (DPM-HB-MNL)

on respondents’ preference formation did not substantial-
ly pay off for our data, especially not with regard to the
predictive model performance. Nevertheless, we could
observe a slight increase in goodness-of-fit statistics re-
lated to a number of significant country of origin effects
on mean part-worth utilities (which of course could also
be at least partly driven by the large sample size). In oth-
er words, even if the model performance could not be no-
ticeably improved, a small part of the heterogeneity in
respondents’ preferences can still be explained by or as-
signed to these covariates. For this reason, it appears
worthwhile to take a final look at potential differences
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HB-MNL)

between countries resulting from a post-hoc segmenta-
tion we conducted. In an effort to remain consistent with
the presentation of the results in this section, and because
of the highly similar part-worth utility structures ob-
tained from the models with versus without concomitant
covariates, we continue to focus on the results of the
DPM-HB-MNL model without z-variables. Interpreta-
tion of the part-worth utilities of the models with con-
comitant variables by country is nearly identical; the cor-
responding results are available from the authors upon
request.

Fig. 4 displays the different mean utility structures of the
five different countries (France, UK, Germany, Italy, and
Spain) for the attributes brand and grip on wet roads.
The brand preference structures turn out very similar for
the five countries. The client brand and the low price
brand are least preferred in general, whereas the brands
Goodyear, Bridgestone, Pirelli, Firestone, and Hankook
are consistently among the brands with the highest part-
worth utilities across the five countries. But we can also
observe an important difference for brand preferences
between the countries. The most preferred brand in
France (on average) is Michelin, which served as the ref-
erence category for estimation with a corresponding part-
worth utility of 0. In contrast, the majority of the other
brands are preferred to Michelin in the UK and Germany
(except the low-price brand in the UK and Germany, and
the client brand in Germany). Interestingly, brand prefer-
ences in Italy nearly coincide with the mean brand pref-
erences across the five countries (not shown in Fig. 4,
compare the posterior means for the DPM-HB-MNL
model in 7ab. 4). Respondents’ preferences for the attri-
bute grip on wet roads barely differ between the coun-

tries, and show the expected pattern: tires providing a
better performance on wet roads are consistently pre-
ferred to tires with less efficiency. Similarly, consumer
preferences for all other technical features (tire type, lon-
gevity, and rolling resistance/fuel consumption) as well
as for the two attributes consumer reviews and indepen-
dent test results differ only marginally between the five
countries, and consequently nearly coincide with the
pooled preference patterns, as given by the population
means in Tab. 4 [8].

In summary, we can observe a large amount of (unob-
served) preference heterogeneity in our empirical data on
the one hand, but only a very moderate amount of (ob-
served) cross-country heterogeneity on the other. Per-
haps as a consequence of missing substantial differences
in preferences between the countries, both the MoN-HB-
MNL model and the DPM-HB-MNL model suggest one-
component solutions (as the HB-MNL model does by
definition). The DPM-HB-MNL model revealed the
highest degree of shrinkage and the best predictive per-
formance across the three types of models (independent
of whether the concomitant covariates were included or
not). A second reason for the small amount of cross-
country consumer heterogeneity may be attributed to the
nature of the attributes used in the conjoint study. Except
for the brand attribute and the type of tire, all other attri-
butes are of a “the more the better” or “the less the bet-
ter” nature, suggesting a natural (i.e. monotonic) order of
preference (which we actually obtained from our mod-
els). Nevertheless, considering the potential impact of
consumer background characteristics on part-worth utili-
ties made it possible to identify at least some cross-coun-
try heterogeneity in terms of differences in brand prefer-
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ences (as illustrated for the one-component DPM-HB-
MNL model in Fig. 4). These differences can be ex-
plained for example by a county-of-origin effect, or by
an effect of ethnocentrism and patriotism on consumer
preferences, as captured by the country dummies (e.g.
for Michelin).

4, Conclusion

Considering heterogeneity in consumers’ choice behav-
iour has become a key focus of CBC studies. For more
than two decades, ongoing research has examined how to
model heterogeneity in conjoint approaches. One main
focus here lies on the comparison of the performance of
established competing approaches to capture consumer
heterogeneity (e.g. Krueger et al. 2018; Otter et al. 2004;
Voleti et al. 2017). Very popular among researchers and
managers is the standard HB-MNL model framework
(Allenby and Ginter 1995; Lenk et al. 1996), which is
characterized by a unimodal continuous distribution to
model consumer heterogeneity (referred to as HB-MNL
in this article). Commercial software for the HB-MNL
model is available, which is the primary reason for its
prominence in marketing research and practice.

Researchers have recently applied and discussed HB
choice models that are more flexible and capable of rep-
resenting multimodal continuous heterogeneity (Baum-
gartner and Steiner 2007; Chen et al. 2017; Krueger et al.
2018; Loffler and Baier 2015; Voleti et al. 2017). MoN-
HB-MNL and DPM-HB-MNL models allow for this
kind of flexible representation of consumer heterogene-
ity and can also accommodate heavy-tailed and skewed
distributions. The advantage of using a DPM-HB-MNL
model is that the number of components does not need to
be specified a priori. The Dirichlet process prior of the
DPM model directly determines the number of mixture
components based on the data and prior settings.

This contribution provided an overview of the most rele-
vant and recent choice models for addressing continuous
heterogeneity in consumers’ preferences. We applied
these models to an empirical data set, assessed their com-
parative performance in terms of goodness-of-fit and
predictive accuracy, and interpreted the estimated hetero-
geneous preference structures. We further showed how to
include consumer background characteristics in the up-
per level of these models as concomitant covariates to
account for observed consumer heterogeneity, with a
special focus on cross-county heterogeneity in our em-
pirical application.

For our data, we observed that all choice models (with
and without concomitant variables) resulted in a one-
component solution. Due to more flexible prior assump-
tions, the DPM-HB-MNL model yielded a higher cross-
validated hit rate compared to the MoN-HB-MNL and
the HB-MNL model. The two latter models tended to
slightly overfit the data, which was indicated by higher
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goodness-of-fit statistics and a lower predictive accura-
cy. We showed that this result could be attributed to the
weaker extent of Bayesian shrinkage of these two mod-
els. Accordingly, the DPM-HB-MNL model is not only
able to account for heavy-tailed distributions (as is
known when using a sufficient number of normal com-
ponents) but also for distributions with thinner tails, the
latter of which was shown in our empirical study as a re-
sult of a larger shrinkage effect compared to the HB-
MNL model (compare Fig. I). Including concomitant
covariates in terms of country of origin information for
the respondents did not improve the statistical model per-
formance (especially not the predictive performance), al-
though it helped to explain a few differences in brand
preferences between the five countries (this also applied
where we did not use these consumer covariates in the
model estimation step, but for post hoc segmentation by
country instead).

The estimated posterior distributions further revealed a
large amount of (unobserved) heterogeneity between re-
spondents, especially with regard to (1) their brand pref-
erences (as reflected by the large standard deviations for
the levels of the brand attribute, see Tub. 4), but also for
(2) worse levels of the technical features rolling resis-
tance/fuel consumption, grip on wet roads, and better
levels of the attribute longevity (also see the correspond-
ing standard deviations in 7ab. 4). This underpins how
ignoring preference heterogeneity between consumers
can harbour the danger of modelling an ‘“average con-
sumer” who simply does not exist in real markets, very
likely leading to biased predictions and wrong manageri-
al implications (e.g. for pricing and product design deci-
sions, or for product positioning objectives).

Our results are only partially in line with Voleti et al.
(2017) who compared various choice models (among
them the HB-MNL, MoN-HB-MNL, and DPM-HB-
MNL models) using eleven empirical data sets character-
ized by different numbers of observations, respondents,
tasks, alternatives per task, attributes, and attribute lev-
els. In their study, DPM-HB-MNL models outperformed
the other models in terms of predictive accuracy as well.
In addition, HB-MNL models did not perform worse
than MoN-HB-MNL models in most of the data sets (as
in our study). In one data set, the HB-MNL model even
led to a better out-of-sample hit probability than the
DPM-HB-MNL model. In contrast to our findings, the
DPM-HB-MNL model also showed the best fit in their
study. However, our empirical data set represents a much
more complex scenario, i.e. it comprised a much larger
number of attributes, respondents, observations, and pa-
rameters compared to all of the data sets used by Voleti et
al. (2017). In addition, we demonstrated the performance
of the models in an alternative-specific design context.
The out-of-sample hit rates in our study turned out simi-
larly high to those in Voleti et al. (2017).

Beyond fit and predictive validity, parameter recovery is
also a relevant topic when investigating or comparing
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different choice models (e.g. Hein et al. 2019). Parameter
recovery measures the fit between “true” and re-estimat-
ed parameters (here: part-worth utilities). However, since
we used a real-life data set to illustrate the application of
the different types of models, true preference structures
of respondents were not known, and parameter recovery
could not be assessed here. “True” preference structures
are known in Monte Carlo simulations, allowing one to
compare artificially generated “true” part-worth utilities
with estimated part-worth utilities in this case. As Voleti
et al. (2017) state, it is interesting to study the perfor-
mance of all models under a reasonable distribution of
heterogeneity. We expect that the results will depend on
the assumptions about the heterogeneity distribution. Fu-
ture research should address the comparison between
these choice models under varying experimental condi-
tions.

A final note regarding the CBC data set used for our em-
pirical study: the data was comprised of respondents
from five different countries and a very large number of
attributes (17), and an alternative-specific design was
chosen for data collection to allow for brand-specific
price effects (each one linear price parameter for each of
the 10 brands). Although from this perspective the data
set can be classified as complex, both the DPM-HB-
MNL and the MoN-HB-MNL resulted in a one-compo-
nent solution (which we did not expect from scratch), as
provided by the HB-MNL by definition. We mentioned
several reasons for this at the end of Section 3.3 (very
low cross-country heterogeneity, the majority of attribu-
tes were of a “the more the better” or “the more the
worse” nature), which should have counteracted a larger
diversity of preferences across respondents, and that did
not allow the DPM-HB-MNL and MoN-HB-MNL mod-
els to develop their greater flexibility for uncovering
more complex (e.g. multimodal) preference structures.
On the other hand, even under these conditions, and the
resulting minor differences between the part-worth utili-
ty estimates between models, the DPM-HB-MNL pro-
vided a somewhat better predictive performance. It fur-
thermore seems from our results that the DPM-HB-MNL
is somewhat more robust against overfitting, since the
MoN-HB-MNL and the HB-MNL models provided a
better model fit, albeit a worse predictive validity at the
same time. More research is needed to validate this find-

ing.

Notes

[1] An extensive discussion regarding the ongoing debate in the
marketing literature on whether to address preference hetero-
geneity with a discrete or a continuous modelling approach
can be found in Paetz and Steiner (2017) and Paetz et al.
(2019). For the discrete approach, the use of latent class mod-
els to determine segments with homogeneous consumer pref-
erences has become extremely popular (see in particular De-
Sarbo et al. 1995, Ramaswamy and Cohen 2007, and Wedel
and Kamakura 2000). Teichert (2001) dealt very early in the
German-language literature with the comparison of latent
class and hierarchical Bayesian methods for utility estimation
in choice-based conjoint analysis.

[2] Our thanks to an anonymous reviewer who pointed this out.

[3] There is a built-in function in bayesm for the log marginal
likelihood (logMargDenNR). We thank an anonymous re-
viewer for this note.

[4] https://en.wikipedia.org/wiki/Tyre_label [05.10.2021]

[5] Density plots for the other attribute and attribute levels look
very similar. A larger shrinkage effect can be observed for the
DPM model in particular. All density plots are available from
the authors upon request.

[6] Note that PC, RLH, IHR, and OHR statistics indicate a con-
siderably better model performance compared to the null
model for all three models.

[7] Note that including the four country dummies in our model re-
quires the estimation of 44 x 4 = 176 additional effects cap-
tured by the A matrix.

[8] The country-level posterior mean part-worth utility structures
for all other attributes not displayed in Fig. 4 are available
from the authors upon request.
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